Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma

Abstract

Multiple myeloma (MM) is the second most prevalent hematologic malignancy. Aberrant microRNAs (miRNAs) expression has been shown to be involved in the pathogenesis of MM. In this study, we further demonstrated that miR-137 was significantly downregulated in MM and negatively correlated with clinical prognosis. Moreover, we described the epigenetic regulation of miR-137 and its association with progression-free survival in MM patients. Furthermore, overexpression of miR-137 in MM cell line (miR-137 OE) increased its sensitivity to bortezomib and eprirubicin in vitro. Also, some high-risk genetic abnormalities in MM, including deletion of chromosome 1p22.2, 14q or 17p13, and gain of chromosome 1p22.2 were detected in NCI-H929 empty vector (NCI-H929 EV) treated cells but not in the NCI-H929 miR-137 overexpression (NCI-H929 miR-137 OE) cells. Luciferase reporter assays demonstrated that miR-137 targeted AURKA. Ectopic expression of miR-137 strongly reduced the expression of AURKA and p-ATM/Chk2 in MM cells, and increased the expression of p53, and p21. Importantly, miR-137 overexpression together with bortezomib treatment significantly inhibited tumor growth in MM xenograft model. Taken together, this study demonstrates that miR-137 is epigenetically silenced in MM, and overexpression of miR-137 could reduce drug resistance and overcome chromosomal instability of the MM cells via affecting the apoptosis and DNA damage pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC . Multiple myeloma. Lancet 2009; 374: 324–339.

    Article  Google Scholar 

  2. Kyle RA, Rajkumar SV . Multiple myeloma. Blood 2008; 111: 2962–2972.

    Article  CAS  Google Scholar 

  3. Cottini F, Anderson K . Novel therapeutic targets in multiple myeloma. Clin Adv Hematol Oncol 2015; 13: 236–248.

    PubMed  Google Scholar 

  4. Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008; 68: 425–433.

    Article  CAS  Google Scholar 

  5. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008; 7: 2152–2159.

    Article  CAS  Google Scholar 

  6. Miller TE, Ghoshal K, Ramaswamy B, Miller TE, Ghoshal K, Ramaswamy B et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem 2008; 283: 29897–29903.

    Article  CAS  Google Scholar 

  7. Sun CY, She XM, Qin Y, Chu ZB, Chen L, Ai LS et al. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis 2012; 34: 426–435.

    Article  Google Scholar 

  8. Roccaro AM, Sacco A, Thompson B, Leleu X, Azab AK, Azab F et al. MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 2009; 113: 6669–6680.

    Article  CAS  Google Scholar 

  9. Chen L, Li C, Zhang R, Gao X, Qu X, Zhao M et al. miR-17-92 cluster microRNAs confers tumorigenicity in multiple myeloma. Cancer Lett 2011; 309: 62–70.

    Article  CAS  Google Scholar 

  10. Gao X, Zhang R, Qu X, Zhao M, Zhang S, Wu H et al. MiR-15a, miR-16-1 and miR-17-92 cluster expression are linked to poor prognosis in multiple myeloma. Leuk Res 2012; 36: 1505–1509.

    Article  CAS  Google Scholar 

  11. Chang H, Qi X, Jiang A, Xu W, Young T, Reece D . 1p21 deletions are strongly associated with 1q21 gains and are an independent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transplant 2010; 45: 117–121.

    Article  CAS  Google Scholar 

  12. Chang H, Ning Y, Qi X, Yeung J, Xu W . Chromosome 1p21 deletion is a novel prognostic marker in patients with multiple myeloma. Br J Haematol 2007; 139: 51–54.

    Article  CAS  Google Scholar 

  13. Yang Y, Li F, Saha MN, Abdi J, Qiu L, Chang H . miR-137 and miR-197 Induce Apoptosis and Suppress Tumorigenicity by Targeting MCL-1 in Multiple Myeloma. Clin Cancer Res 2015; 21: 2399–2411.

    Article  CAS  Google Scholar 

  14. Wong KY, Yim RL, So CC, Jin DY, Liang R, Chim CS . Epigenetic inactivation of the MIR34B/C in multiple myeloma. Blood 2011; 118: 5901–5904.

    Article  CAS  Google Scholar 

  15. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 2010; 70: 6609–6618.

    Article  CAS  Google Scholar 

  16. Chen X, Wang J, Shen H, Lu J, Li C, Hu DN et al. Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Invest Ophthalmol Vis Sci 2011; 52: 1193–1199.

    Article  CAS  Google Scholar 

  17. Li LC, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427–1431.

    Article  CAS  Google Scholar 

  18. Zhu X, Li Y, Shen H, Li H, Long L, Hui L et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett 2013; 587: 73–81.

    Article  CAS  Google Scholar 

  19. Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 2007; 110: 1330–1333.

    Article  Google Scholar 

  20. Lionetti M, Biasiolo M, Agnelli L, Todoerti K, Mosca L, Fabris S et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 2009; 114: e20–e26.

    Article  CAS  Google Scholar 

  21. Pichiorri F, Suh SS, Ladetto M, Kuehl M, Palumbo T, Drandi D et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 2008; 105: 12885–12890.

    Article  CAS  Google Scholar 

  22. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG et al. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 2008; 68: 1362–1368.

    Article  CAS  Google Scholar 

  23. Steponaitiene R, Kupcinskas J, Langner C, Balaguer F, Venclauskas L, Pauzas H et al. Epigenetic silencing of miR-137 is a frequent event in gastric carcinogenesis.LID - 10.1002/mc.22287 [doi]. Mol Carcinog 2015; 55: 376–386.

    Article  Google Scholar 

  24. Takwi AA, Wang YM, Wu J, Michaelis M, Cinatl J, Chen T . miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene 2014; 33: 3717–3729.

    Article  CAS  Google Scholar 

  25. Morgan GJ, Walker BA, Davies FE . The genetic architecture of multiple myeloma. Nat Rev Cancer 2012; 12: 335–348.

    Article  CAS  Google Scholar 

  26. Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 2006; 108: 1724–1732.

    Article  CAS  Google Scholar 

  27. An G, Xu Y, Shi L, Shizhen Z, Deng S, Xie Z et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica 2014; 99: 353–359.

    Article  CAS  Google Scholar 

  28. Klein U, Jauch A, Hielscher T, Hillengass J, Raab MS, Seckinger A et al. Chromosomal aberrations +1q21 and del(17p13) predict survival in patients with recurrent multiple myeloma treated with lenalidomide and dexamethasone. Cancer 2011; 117: 2136–2144.

    Article  CAS  Google Scholar 

  29. Reece D, Song KW, Fu T, Roland B, Chang H, Horsman DE et al. Influence of cytogenetics in patients with relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone: adverse effect of deletion 17p13. Blood 2009; 114: 522–525.

    Article  CAS  Google Scholar 

  30. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z . A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006; 38: 1043–1048.

    Article  CAS  Google Scholar 

  31. Chng WJ, Ahmann GJ, Henderson K, Santana-Davila R, Greipp PR, Gertz MA et al. Clinical implication of centrosome amplification in plasma cell neoplasm. Blood 2006; 107: 3669–3675.

    Article  CAS  Google Scholar 

  32. Fu J, Bian M, Jiang Q, Zhang C . Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 2007; 5: 1–10.

    Article  CAS  Google Scholar 

  33. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 2003; 114: 585–598.

    Article  CAS  Google Scholar 

  34. Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, Horii A . AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene 2006; 25: 4831–4839.

    Article  CAS  Google Scholar 

  35. Cammareri P, Scopelliti A, Todaro M, Eterno V, Francescangeli F, Moyer MP et al. Aurora-a is essential for the tumorigenic capacity and chemoresistance of colorectal cancer stem cells. Cancer Res 2010; 70: 4655–4665.

    Article  CAS  Google Scholar 

  36. Mosquera JM, Beltran H, Park K, MacDonald TY, Robinson BD, Tagawa ST et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 2013; 15: 1–10.

    Article  CAS  Google Scholar 

  37. Katsha A, Soutto M, Sehdev V, Peng D, Washington MK, Piazuelo MB et al. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 2013; 145: 1312–1322 e1–8.

    Article  CAS  Google Scholar 

  38. Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Tang Z et al. Aurora kinase A inhibition-induced autophagy triggers drug resistance in breast cancer cells. Autophagy 2012; 8: 1798–1810.

    Article  CAS  Google Scholar 

  39. Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F et al. Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 2004; 36: 55–62.

    Article  CAS  Google Scholar 

  40. Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A et al. Frequent overexpression of Aurora Kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 2008; 112: 1688–1698.

    Article  CAS  Google Scholar 

  41. Yang H, He L, Kruk P, Nicosia SV, Cheng JQ . Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 2006; 119: 2304–2312.

    Article  CAS  Google Scholar 

  42. Dutta-Simmons J, Zhang Y, Gorgun G, Gatt M, Mani M, Hideshima T et al. Aurora kinase A is a target of Wnt/beta-catenin involved in multiple myeloma disease progression. Blood 2009; 114: 2699–2708.

    Article  CAS  Google Scholar 

  43. Gorgun G, Calabrese E, Hideshima T, Ecsedy J, Perrone G, Mani M et al. A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma. Blood 2010; 115: 5202–5213.

    Article  CAS  Google Scholar 

  44. Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013; 23: 48–62.

    Article  CAS  Google Scholar 

  45. Shi Y, Reiman T, Li W, Maxwell CA, Sen S, Pilarski L et al. Targeting aurora kinases as therapy in multiple myeloma. Blood 2007; 109: 3915–3921.

    Article  CAS  Google Scholar 

  46. Hose D, Reme T, Meissner T, Moreaux J, Seckinger A, Lewis J et al. Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood 2009; 113: 4331–4340.

    Article  CAS  Google Scholar 

  47. Michaelis M, Selt F, Rothweiler F, Wiese M, Cinatl J Jr . ABCG2 impairs the activity of the aurora kinase inhibitor tozasertib but not of alisertib. BMC Res Notes 2015; 8: 484.

    Article  Google Scholar 

  48. Long ZJ, Wang LX, Zheng FM, Chen JJ, Luo Y, Tu XX et al. A novel compound against oncogenic Aurora kinase A overcomes imatinib resistance in chronic myeloid leukemia cells. Int J Oncol 2015; 46: 2488–2496.

    Article  CAS  Google Scholar 

  49. Kelly KR, Shea TC, Goy A, Berdeja JG, Reeder CB, McDonagh KT et al. Phase I study of MLN8237—investigational Aurora A kinase inhibitor—in relapsed/refractory multiple myeloma, non-Hodgkin lymphoma and chronic lymphocytic leukemia. Invest New Drugs 2014; 32: 489–499.

    Article  CAS  Google Scholar 

  50. Caputo E, Miceli R, Motti ML, Tate R, Fratangelo F, Botti G et al. AurkA inhibitors enhance the effects of B-RAF and MEK inhibitors in melanoma treatment. J Transl Med 2014; 12: 216.

    Article  Google Scholar 

  51. Sun H, Wang Y, Wang Z, Meng J, Qi Z, Yang G . Aurora-A controls cancer cell radio- and chemoresistance via ATM/Chk2-mediated DNA repair networks. Biochim Biophys Acta 2014; 1843: 934–944.

    Article  CAS  Google Scholar 

  52. Yang G, Chang B, Yang F, Guo X, Cai KQ, Xiao XS et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res 2010; 16: 3171–3181.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Natural Science Foundation of China (81172255, 81400174, 81400175, 81400169, 81502019, and 81630007), Science and Technology Infrastructure Program of Tianjin(12ZCDZSY17600) and National Basic Research Program of China (973 program: 2012CB966504).

Author contributions

YQ, SZ, XQ and FL performed experiments; SD, GA, YX, MH and YY analyzed the results; WZ, HC and LQ designed the research; YQ and WZ wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Zhou or L Qiu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Zhang, S., Deng, S. et al. Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia 31, 1123–1135 (2017). https://doi.org/10.1038/leu.2016.325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.325

This article is cited by

Search

Quick links