Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplastic syndrome

Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome

Abstract

Somatic inactivating mutations in epigenetic regulators are frequently found in combination in myelodysplastic syndrome (MDS). However, the mechanisms by which combinatory mutations in epigenetic regulators promote the development of MDS remain unknown. Here we performed epigenomic profiling of hematopoietic progenitors in MDS mice hypomorphic for Tet2 following the loss of the polycomb-group gene Ezh2 (Tet2KD/KDEzh2Δ/Δ). Aberrant DNA methylation propagated in a sequential manner from a Tet2-insufficient state to advanced MDS with deletion of Ezh2. Hyper-differentially methylated regions (hyper-DMRs) in Tet2KD/KDEzh2Δ/Δ MDS hematopoietic stem/progenitor cells were largely distinct from those in each single mutant and correlated with transcriptional repression. Although Tet2 hypomorph was responsible for enhancer hypermethylation, the loss of Ezh2 induced hyper-DMRs that were enriched for CpG islands of polycomb targets. Notably, Ezh2 targets largely lost the H3K27me3 mark while acquiring a significantly higher level of DNA methylation than Ezh1 targets that retained the mark. These findings indicate that Ezh2 targets are the major targets of the epigenetic switch in MDS with Ezh2 insufficiency. Our results provide a detailed trail for the epigenetic drift in a well-defined MDS model and demonstrate that the combined dysfunction of epigenetic regulators cooperatively remodels the epigenome in the pathogenesis of MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Timp W, Feinberg AP . Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 2013; 13: 497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P . Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat Rev Genet 2013; 14: 765–780.

    Article  CAS  PubMed  Google Scholar 

  3. Oakes CC, Claus R, Gu L, Assenov Y, Hllein J, Zucknick M et al. Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia. Cancer Discov 2014; 4: 348–361.

    Article  CAS  PubMed  Google Scholar 

  4. Ley TJ, Ding L, Walter MJ, McLellan MD, Lemprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. New Eng J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  Google Scholar 

  5. Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009; 41: 838–842.

    Article  CAS  PubMed  Google Scholar 

  6. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    Article  CAS  PubMed  Google Scholar 

  7. Loiseau C, Ali A, Itzykson R . New therapeutic approaches in myelodysplastic syndromes: hypomethylating agents and lenalidomide. Exp Hematol 2015; 43: 661–672.

    Article  CAS  PubMed  Google Scholar 

  8. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. New Eng J Med 2011; 364: 2496–2506.

    Article  CAS  PubMed  Google Scholar 

  9. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014; 28: 241–247.

    Article  CAS  PubMed  Google Scholar 

  10. Muto T, Sashida G, Oshima M, Wendt GR, Mochizuki-Kashio M, Nagata Y et al. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J Exp Med 2013; 210: 2627–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 2011; 118: 4509–4518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333: 1300–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011; 333: 1303–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeong M, Goodell MA . New answers to old questions from genome-wide maps of DNA methylation in hematopoietic cells. Exp Hematol 2014; 42: 609–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer cell 2011; 20: 11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quivoron C, Couronne L, Valle VD, Lopez CK, Plo I, Wagner-Ballon O et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer cell 2011; 20: 25–38.

    Article  CAS  PubMed  Google Scholar 

  17. Shih AH, Jiang Y, Meydan C, Shank K, Pandey S, Barreyro L et al. Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer cell 2015; 27: 502–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger FO et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev 2015; 29: 910–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oshima M, Iwama A . Epigenetics of hematopoietic stem cell aging and disease. Int J Hematol 2014; 100: 326–334.

    Article  CAS  PubMed  Google Scholar 

  20. Morin RD, Johnson NA, Severson TM, Mungall A, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nikoloski G, Langemeijer SM, Kuiper RP, Knops R, Massop M, Tönnissen ERLTM et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010; 42: 665–667.

    Article  CAS  PubMed  Google Scholar 

  22. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  PubMed  Google Scholar 

  23. Mochizuki-Kashio M, Aoyama K, Sashida G, Oshima M, Tomioka T, Muto T et al. Ezh2 loss in hematopoietic stem cells predisposes mice to develop heterogeneous malignancies in an Ezh1-depenedent manner. Blood 2015; 126: 1172–1183.

    Article  CAS  PubMed  Google Scholar 

  24. Oshima M, Hasegawa N, Mochizuki-Kashio M, Muto T, Miyagi S, Koide S et al. Ezh2 regulates the Lin28/let-7 pathway to restrict activation of fetal gene signature in adult hematopoietic stem cells. Exp Hematol 2016; 44: 282–296.

    Article  CAS  PubMed  Google Scholar 

  25. Lund K, Adams PD, Copland M . EZH2 in normal and malignant hematopoiesis. Leukemia 2014; 28: 44–49.

    Article  CAS  PubMed  Google Scholar 

  26. Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun 2014; 5: 4177.

    Article  CAS  PubMed  Google Scholar 

  27. Shide K, Kameda T, Shimoda H, Yamaji T, Abe H, Sekine M et al. TET2 is essential for survival and hematopoietic stem cell homeostasis. Leukemia 2012; 26: 2216–2223.

    Article  CAS  PubMed  Google Scholar 

  28. Astiaso DL, Weiner A, Vivas EL, Zaretsky I, Jaitin DA, David E et al. Chromatin state dynamics during blood formation. Science 2014; 345: 943–949.

    Article  Google Scholar 

  29. Akalin A, Kormaksson M, Li S, Garrett-Bakelman F, Figueroa ME, Melnick A et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 2012; 13: R87.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 2014; 56: 286–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y . Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 2014; 28: 2103–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maegawa S, Gough SM, Watanabe-Okochi N, Lu Y, Zhang N, Castoro RJ et al. Age-related epigenetic drift in the pathogenesis of MDS and AML. Genome Res 2014; 24: 580–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013; 12: 413–425.

    Article  CAS  PubMed  Google Scholar 

  34. Klco JM, Spencer DH, Lamprecht TL, Sarkaria SM, Wylie T, Magrini V et al. Genomic impact of transient low-dose decitabine treatment on primary AML cells. Blood 2013; 121: 1633–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao Z, Chen L, Dawlaty MM, Pan F, Weeks O, Zhou Y et al. Combined loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice. Cell Rep 2015; 13: 1692–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pruitt KD, Tatusova T, Maglott DR . NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2005; 33: D501–D504.

    Article  CAS  PubMed  Google Scholar 

  37. Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 2008; 4: e1000242.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K et al. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 2014; 55: 347–360.

    Article  CAS  PubMed  Google Scholar 

  39. Signaroldi E, Laise P, Cristofanon S, Brancaccio A, Reisoli E, Atashpaz S et al. Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network. Nat Commun 2016; 7: 10753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pellagatti A, Cazzola M, Giagounidis A, Perry J, Malcovati L, Della Porta MG et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 2010; 24: 756–764.

    Article  CAS  PubMed  Google Scholar 

  41. Wong YF, Micklem CN, Taguchi M, Itonaga H, Sawayama Y, Imanishi D et al. Longitudinal analysis of DNA methylation in CD34+ hematopoietic progenitors in myelodysplastic syndrome. Stem cells Transl Med 2014; 3: 1188–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sirin O, Lukov GL, Mao R, Conneely OM, Goodell MA . The orphan nuclear receptor Nurr1 restricts the proliferation of haematopoietic stem cells. Nat Cell Biol 2010; 12: 1213–1219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Mibrandt J et al. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat Med 2007; 13: 730–735.

    Article  CAS  PubMed  Google Scholar 

  45. Ramirez-Herrick AM, Mullican SE, Sheehan AM, Conneely OM . Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood 2011; 117: 2681–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, Dipesio J et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006; 106: 1794–1803.

    Article  CAS  PubMed  Google Scholar 

  47. Jabbour E, Issa JP, Garcia-Manero G, Kantarjian H . Evolution of decitabine development: accomplishments, ongoing investigations, and future strategies. Cancer 2008; 112: 2341–2351.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Yan X, Chen A, Sashida G, Xiao Z, Huang G . Modeling and targeting MLL-PTD/RUNX1 related MDS/AML in mouse. Blood 2013; 21: 2746.

    Google Scholar 

  49. Wang LX, Mei ZY, Zhou JH, Yao YS, Li YH, Xu YH et al. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLoS One 2013; 8: e62924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371: 2488–2498.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371: 2477–2487.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Loo PV et alChronic Myeloid Disorders Working Group of the International Cancer Genome Consortium. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013; 122: 3616–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun D, Luo M, Jeong M, Rodriguez B, Xia Z, Hannah R et al. Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. Cell Stem Cell 2014; 14: 673–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Issa JP . The myelodysplastic syndrome as a prototypical epigenetic disease. Blood 2013; 121: 3811–3817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Easwaran H, Johnstone SE, Van Neste L, Ohm J, Mosbruger T, Wang Q et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 2012; 22: 837–849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bernstein BE, Mikkelsen TS, Xie X, Kamel M, Huebert DJ, Cuff J et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315–326.

    Article  CAS  PubMed  Google Scholar 

  57. Oguro H, Yuan J, Ichikawa H, Ikawa T, Yamazaki S, Kawamoto H et al. Poised lineage specification in multipotent hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell 2010; 6: 279–286.

    Article  CAS  PubMed  Google Scholar 

  58. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871–874.

    Article  CAS  PubMed  Google Scholar 

  59. Das PP, Hendrix DA, Apostolou E, Buchner AH, Canver MC, Beyaz S et al. PRC2 is required to maintain expression of the maternal Gtl2-Rain-Mirg locus by preventing de novo DNA methylation in mouse embryonic stem cells. Cell Rep 2015; 12: 1456–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol JB et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest 2015; 125: 1857–1872.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 2014; 124: 2705–2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khan SN, Jankowska AM, Mahfouz R, Dunbar AJ, Sugimoto Y, Hosono N et al. Multiple mechanisms deregulate EZH2 and histone H3 lysine 27 epigenetic changes in myeloid malignancies. Leukemia 2013; 27: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  63. Kim E, Ilagan JO, Liang Y, Daubver GM, Lee SC, Ramakrishnan A et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 2015; 27: 617–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Haruhiko Koseki (RIKEN, Japan) for providing us with Ezh2 mutant mice. We thank Sekiya T and Yoshimura T (Keio University, Tokyo) for providing us with the eMIGR1 and eMIGR1-Nr4a vectors. We thank Ola Mohammed Kamel Rizq for the critical review of our manuscript. This work was supported in part by Grants-in-Aid for Scientific Research (#15H02544) and Scientific Research on Innovative Areas ‘Stem Cell Aging and Disease’ (#26115002) from MEXT, Japan, and grants from the Uehara Memorial Foundation, Yasuda Memorial Medical Foundation, and Tokyo Biochemical Research Foundation. The super-computing resource was provided by Human Genome Center, the Institute of Medical Science, the University of Tokyo (http://sc.hgc.jp/shirokane.html).

Author contributions

NH and MO performed the experiments, analyzed results, made the figures and actively wrote the manuscript. GS, HM, SK, MO, AS, CW, TM, KT, AK, CN and KY assisted with the experiments. KS provided mice and AI conceived of and directed the project, secured funding and actively wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Iwama.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasegawa, N., Oshima, M., Sashida, G. et al. Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome. Leukemia 31, 861–871 (2017). https://doi.org/10.1038/leu.2016.268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.268

This article is cited by

Search

Quick links