Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

Pan-Raf co-operates with PI3K-dependent signalling and critically contributes to myeloma cell survival independently of mutated RAS

Abstract

Direct therapeutic targeting of oncogenic RAS is currently still impossible due to lack of suitable pharmacological inhibitors. Because specific blockade of druggable RAS effectors might represent an alternative treatment approach, we evaluated the role of the Raf complex for multiple myeloma (MM) pathobiology. We found frequent overexpression of the Raf isoforms (A-, B- and C-Raf) and downstream activation of MEK1,2/ERK1,2 in MM cells. Concomitant inhibition of all Raf isoforms (pan-Raf inhibition) by RNAi or pharmacological inhibitors was required to strongly induce apoptosis in human MM cell lines (HMCLs), in primary MM cells in vitro, and in a syngeneic MM mouse model in vivo. The anti-MM effect of pan-Raf inhibition did not correlate with the RAS mutation status, and functionally appeared to involve both MEK-dependent and -independent mechanisms. Furthermore, transcriptome analyses revealed that pan-Raf activity affects PI3K-dependent signalling, thus highlighting a functional link between the RAS/Raf and PI3K/mTOR/Akt pro-survival pathways. Accordingly, pharmacological inhibition of PI3K strongly enhanced the anti-MM effect of pan-Raf inhibition in MM cell lines and in primary MM cells in vitro and in vivo. Concomitant pan-Raf/PI3K inhibition was also effective in carfilzomib- and lenalidomide-resistant MM models underscoring that this attractive therapeutic anti-MM strategy is suitable for immediate clinical translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Neri A, Murphy JP, Cro L, Ferrero D, Tarella C, Baldini L et al. Ras oncogene mutation in multiple myeloma. J Exp Med 1989; 170: 1715–1725.

    Article  CAS  PubMed  Google Scholar 

  2. Lionetti M, Barbieri M, Todoerti K, Agnelli L, Marzorati S, Fabris S et al. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation. Oncotarget 2015; 6: 24205–24217.

    PubMed  PubMed Central  Google Scholar 

  3. Steinbrunn T, Stühmer T, Gattenlöhner S, Rosenwald A, Mottok A, Unzicker C et al. Mutated RAS and constitutively activated Akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival. Blood 2011; 117: 1998–2004.

    Article  CAS  PubMed  Google Scholar 

  4. Beeram M, Patnaik A, Rowinsky EK . Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 2005; 23: 6771–6790.

    CAS  PubMed  Google Scholar 

  5. Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A et al. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2: 232–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baljuls A, Kholodenko BN, Kolch W . It takes two to tango - signalling by dimeric Raf kinases. Mol Biosyst 2013; 9: 551–558.

    Article  CAS  PubMed  Google Scholar 

  7. Zambon A, Niculescu-Duvaz I, Niculescu-Duvaz D, Marais R, Springer CJ . Small molecule inhibitors of BRAF in clinical trials. Bioorg Med Chem Lett 2012; 22: 789–792.

    Article  CAS  PubMed  Google Scholar 

  8. John L, Cowey CL . The rapid emergence of novel therapeutics in advanced malignant melanoma. Dermatol Ther 2015; 5: 151–169.

    Article  Google Scholar 

  9. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014; 25: 91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Andrulis M, Lehners N, Capper D, Penzel R, Heining C, Huellein J et al. Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov 2013; 3: 862–869.

    Article  CAS  PubMed  Google Scholar 

  12. Sharman JP, Chmielecki J, Morosini D, Palmer GA, Ross JS, Stephens PJ et al. Vemurafenib response in 2 patients with posttransplant refractory BRAF V600E-mutated multiple myeloma. Clin Lymphoma Myeloma Leuk 2014; 14: e161–e163.

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee M, Stühmer T, Herrmann P, Bommert K, Dörken B, Bargou RC . Combined disruption of both the MEK/ERK and the IL-6R/STAT3 pathways is required to induce apoptosis of multiple myeloma cells in the presence of bone marrow stromal cells. Blood 2004; 104: 3712–3721.

    Article  CAS  PubMed  Google Scholar 

  14. Chatterjee M, Hönemann D, Lentzsch S, Bommert K, Sers C, Herrmann P et al. In the presence of bone marrow stromal cells human multiple myeloma cells become independent of the IL-6/gp130/STAT3 pathway. Blood 2002; 100: 3311–3318.

    Article  CAS  PubMed  Google Scholar 

  15. Steinbrunn T, Chatterjee M, Bargou RC, Stühmer T . Efficient transient transfection of human multiple myeloma cells by electroporation–an appraisal. PLoS One 2014; 9: e97443.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stühmer T, Arts J, Chatterjee M, Borawski J, Wolff A, King P et al. Preclinical anti-myeloma activity of the novel HDAC-inhibitor JNJ-26481585. Br J Haematol 2010; 149: 529–536.

    Article  PubMed  Google Scholar 

  17. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  18. Riedel SS, Mottok A, Brede C, Bäuerlein CA, Jordan Garrote AL, Ritz M et al. Non-invasive imaging provides spatiotemporal information on disease progression and response to therapy in a murine model of multiple myeloma. PLoS One 2012; 7: e52398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. King AJ, Patrick DR, Batorsky RS, Ho ML, Do HT, Zhang SY et al. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res 2006; 66: 11100–11105.

    Article  CAS  PubMed  Google Scholar 

  20. Takle AK, Brown MJ, Davies S, Dean DK, Francis G, Gaiba A et al. The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bioorg Med Chem Lett 2006; 16: 378–381.

    Article  CAS  PubMed  Google Scholar 

  21. Gibney GT, Zager JS . Clinical development of dabrafenib in BRAF mutant melanoma and other malignancies. Expert Opin Drug Metab Toxicol 2009; 9: 893–899.

    Article  Google Scholar 

  22. King AJ, Arnone MR, Bleam MR, Moss KG, Yang J, Fedorowicz KE et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One 2013; 8: e67583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rheault TR, Stellwagen JC, Adjabeng GM, Hornberger KR, Petrov KG, Waterson AG et al. Discovery of Dabrafenib: a selective inhibitor of Raf kinases with antitumor activity against B-Raf-driven tumors. ACS Med Chem Lett 2013; 4: 358–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leich E, Weissbach S, Klein HU, Grieb T, Pischimarov J, Stühmer T et al. Multiple myeloma is affected by multiple and heterogeneous somatic mutations in adhesion- and receptor tyrosine kinase signalling molecules. Blood Cancer J 2013; 3: e102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zöllinger A, Stühmer T, Chatterjee M, Gattenlöhner S, Haralambieva E, Müller-Hermelink HK et al. Combined functional and molecular analysis of tumor cell signalling defines 2 distinct myeloma subgroups: Akt-dependent and Akt-independent multiple myeloma. Blood 2008; 112: 3403–3411.

    Article  PubMed  Google Scholar 

  26. Steinbrunn T, Stühmer T, Sayehli C, Chatterjee M, Einsele H, Bargou RC . Combined targeting of MEK/MAPK and PI3K/Akt signalling in multiple myeloma. Br J Haematol 2012; 159: 430–440.

    Article  CAS  PubMed  Google Scholar 

  27. Hofmann C, Stühmer T, Schmiedl N, Wetzker R, Mottok A, Rosenwald A et al. PI3K-dependent multiple myeloma cell survival is mediated by the PIK3CA isoform. Br J Haematol 2014; 166: 529–539.

    Article  CAS  PubMed  Google Scholar 

  28. Spencer A, Yoon SS, Harrison SJ, Morris SR, Smith DA, Brigandi RA et al. The novel AKT inhibitor afuresertib shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma. Blood 2014; 124: 2190–2195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Samatar AA, Poulikakos PI . Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 2014; 13: 928–942.

    Article  CAS  PubMed  Google Scholar 

  30. Harris TJ, McCormick F . The molecular pathology of cancer. Nat Rev Clin Oncol 2010; 7: 251–265.

    Article  CAS  PubMed  Google Scholar 

  31. Chung E, Kondo M . Role of Ras/Raf/MEK/ERK signalling in physiological hematopoiesis and leukemia development. Immunol Res 2001; 49: 248–268.

    Article  Google Scholar 

  32. Paterson JL, Li Z, Wen XY, Masih-Khan E, Chang H, Pollett JB et al. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 2004; 124: 595–603.

    Article  CAS  PubMed  Google Scholar 

  33. Morgan GJ, Walker BA, Davies FE . The genetic architecture of multiple myeloma. Nat Rev Cancer 2012; 12: 335–348.

    Article  CAS  PubMed  Google Scholar 

  34. Ronchetti D, Greco A, Compasso S, Colombo G, Dell'Era P, Otsuki T et al. Deregulated FGFR3 mutants in multiple myeloma cell lines with t(4;14): comparative analysis of Y373C, K650E and the novel G384D mutations. Oncogene 2001; 20: 3553–3562.

    Article  CAS  PubMed  Google Scholar 

  35. Kortum RL, Morrison DK . Path forward for RAF therapies: inhibition of monomers and dimers. Cancer Cell 2015; 28: 279–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whittaker SR, Cowley GS, Wagner S, Luo F, Root DE, Garraway LA . Combined Pan-RAF and MEK inhibition overcomes multiple resistance mechanisms to selective RAF inhibitors. Mol Cancer Ther 2015; 14: 2700–2711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng SB, Henry JR, Kaufman MD, Lu WP, Smith BD, Vogeti S et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 2015; 28: 384–398.

    Article  CAS  PubMed  Google Scholar 

  38. Atefi M, Titz B, Avramis E, Ng C, Wong DJ, Lassen A et al. Combination of pan-RAF and MEK inhibitors in NRAS mutant melanoma. Mol Cancer 2015; 14: 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakamura A, Arita T, Tsuchiya S, Donelan J, Chouitar J, Carideo E et al. Antitumor activity of the selective pan-RAF inhibitor TAK-632 in BRAF inhibitor-resistant melanoma. Cancer Res 2013; 73: 7043–7055.

    Article  CAS  PubMed  Google Scholar 

  40. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in parts by grants from the Deutsche Forschungsgemeinschaft (KFO 216), and from the Interdisciplinary Center for Clinical Research of the University of Würzburg (B-188 and Z 6).

Author contributions

EM and SB designed the research, cloned shRNA expression vectors, performed viability assays and western blot analyses and wrote the manuscript. EM and CJS performed the GEP experiments and analysed the data. SK, DB, ABr and ABe conducted the in vivo experiments. SK and HS kept the cell culture, performed viability assays and western blot analyses. AM and AR performed and analysed immunohistochemical and immunofluorescent analyses. TStü contributed to the construction of shRNA expression vectors, performed viability assays with primary MM cells and wrote the manuscript. TSte analysed the RAS mutation status of MM cells. AB facilitated in vivo experiments and analysed the data. RCB wrote and approved the final version of the manuscript. MC conceived and designed the research, supervised the project, wrote the manuscript and approved the data and final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Chatterjee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, E., Bauer, S., Stühmer, T. et al. Pan-Raf co-operates with PI3K-dependent signalling and critically contributes to myeloma cell survival independently of mutated RAS. Leukemia 31, 922–933 (2017). https://doi.org/10.1038/leu.2016.264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.264

This article is cited by

Search

Quick links