Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular targets for therapy

Phosphorylation of a constrained azacyclic FTY720 analog enhances anti-leukemic activity without inducing S1P receptor activation

Abstract

The frequency of poor outcomes in relapsed leukemia patients underscores the need for novel therapeutic approaches. The Food and Drug Administration-approved immunosuppressant FTY720 limits leukemia progression by activating protein phosphatase 2A and restricting nutrient access. Unfortunately, FTY720 cannot be re-purposed for use in cancer patients due to on-target toxicity associated with S1P receptor activation at the elevated, anti-neoplastic dose. Here we show that the constrained azacyclic FTY720 analog SH-RF-177 lacks S1P receptor activity but maintains anti-leukemic activity in vitro and in vivo. SH-RF-177 was not only more potent than FTY720, but killed via a distinct mechanism. Phosphorylation is dispensable for FTY720’s anti-leukemic actions. However, chemical biology and genetic approaches demonstrated that the sphingosine kinase 2 (SPHK2)-mediated phosphorylation of SH-RF-177 led to engagement of a pro-apoptotic target and increased potency. The cytotoxicity of membrane-permeant FTY720 phosphonate esters suggests that the enhanced potency of SH-RF-177 stems from its more efficient phosphorylation. The tight inverse correlation between SH-RF-177 IC50 and SPHK2 mRNA expression suggests a useful biomarker for SH-RF-177 sensitivity. In summary, these studies indicate that FTY720 analogs that are efficiently phosphorylated but fail to activate S1P receptors may be superior anti-leukemic agents compared to compounds that avoid cardiotoxicity by eliminating phosphorylation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  PubMed  Google Scholar 

  2. Gaynon PS . Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol 2005; 131: 579–587.

    Article  PubMed  Google Scholar 

  3. Oriol A, Vives S, Hernandez-Rivas JM, Tormo M, Heras I, Rivas C et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica 2010; 95: 589–596.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Romero Rosales K, Singh G, Wu K, Chen J, Janes MR, Lilly MB et al. Sphingolipid-based drugs selectively kill cancer cells by down-regulating nutrient transporter proteins. Biochem J 2011; 439: 299–311.

    Article  CAS  PubMed  Google Scholar 

  5. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007; 117: 2408–2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Q, Zhao X, Frissora F, Ma Y, Santhanam R, Jarjoura D et al. FTY720 demonstrates promising preclinical activity for chronic lymphocytic leukemia and lymphoblastic leukemia/lymphoma. Blood 2008; 111: 275–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pippa R, Dominguez A, Christensen DJ, Moreno-Miralles I, Blanco-Prieto MJ, Vitek MP et al. Effect of FTY720 on the SET-PP2A complex in acute myeloid leukemia; SET binding drugs have antagonistic activity. Leukemia 2014; 28: 1915–1918.

    Article  CAS  PubMed  Google Scholar 

  8. Yasui H, Hideshima T, Raje N, Roccaro AM, Shiraishi N, Kumar S et al. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res 2005; 65: 7478–7484.

    Article  CAS  PubMed  Google Scholar 

  9. Wallington-Beddoe CT, Hewson J, Bradstock KF, Bendall LJ . FTY720 produces caspase-independent cell death of acute lymphoblastic leukemia cells. Autophagy 2011; 7: 707–715.

    Article  CAS  PubMed  Google Scholar 

  10. Liao A, Hu R, Zhao Q, Li J, Li Y, Yao K et al. Autophagy induced by FTY720 promotes apoptosis in U266 cells. Eur J Pharm Sci 2012; 45: 600–605.

    Article  CAS  PubMed  Google Scholar 

  11. Kiyota M, Kuroda J, Yamamoto-Sugitani M, Shimura Y, Nakayama R, Nagoshi H et al. FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors. Apoptosis 2013; 18: 1437–1446.

    Article  CAS  PubMed  Google Scholar 

  12. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 2013; 123: 4144–4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zonta F, Pagano MA, Trentin L, Tibaldi E, Frezzato F, Trimarco V et al. Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A. Blood 2015; 125: 3747–3755.

    Article  CAS  PubMed  Google Scholar 

  14. Salas A, Ponnusamy S, Senkal CE, Meyers-Needham M, Selvam SP, Saddoughi SA et al. Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A. Blood 2011; 117: 5941–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McCracken AN, Edinger AL . Nutrient transporters: the Achilles' heel of anabolism. Trends Endocrinol Metab 2013; 24: 200–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen JA, Chun J . Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol 2011; 69: 759–777.

    Article  CAS  PubMed  Google Scholar 

  17. Camm J, Hla T, Bakshi R, Brinkmann V . Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am Heart J 2014; 168: 632–644.

    Article  CAS  PubMed  Google Scholar 

  18. Paugh SW, Payne SG, Barbour SE, Milstien S, Spiegel S . The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett 2003; 554: 189–193.

    Article  CAS  PubMed  Google Scholar 

  19. Hisano Y, Kobayashi N, Kawahara A, Yamaguchi A, Nishi T . The sphingosine 1-phosphate transporter, SPNS2, functions as a transporter of the phosphorylated form of the immunomodulating agent FTY720. J Biol Chem 2011; 286: 1758–1766.

    Article  CAS  PubMed  Google Scholar 

  20. Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 2002; 277: 21453–21457.

    Article  CAS  PubMed  Google Scholar 

  21. Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY, Peterson MS et al. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem 2004; 279: 13839–13848.

    Article  CAS  PubMed  Google Scholar 

  22. Gergely P, Nuesslein-Hildesheim B, Guerini D, Brinkmann V, Traebert M, Bruns C et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol 2012; 167: 1035–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Omar HA, Chou CC, Berman-Booty LD, Ma Y, Hung JH, Wang D et al. Antitumor effects of OSU-2S, a nonimmunosuppressive analogue of FTY720, in hepatocellular carcinoma. Hepatology 2011; 53: 1943–1958.

    Article  CAS  PubMed  Google Scholar 

  24. Hanessian S, Charron G, Billich A, Guerini D . Constrained azacyclic analogues of the immunomodulatory agent FTY720 as molecular probes for sphingosine 1-phosphate receptors. Bioorg Med Chem Lett 2007; 17: 491–494.

    Article  CAS  PubMed  Google Scholar 

  25. Fransson R, McCracken AN, Chen B, McMonigle RJ, Edinger AL, Hanessian S . Design, synthesis, and anti-leukemic activity of stereochemically defined constrained analogs of FTY720 (Gilenya). ACS Med Chem Lett 2013; 4: 969–973.

    Article  CAS  PubMed Central  Google Scholar 

  26. Bradstock KF, Gottlieb DJ . Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease. Leuk Lymphoma 1995; 18: 1–16.

    Article  CAS  PubMed  Google Scholar 

  27. Kono M, Tucker AE, Tran J, Bergner JB, Turner EM, Proia RL . Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo. J Clin Invest 2014; 124: 2076–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiba K, Yanagawa Y, Masubuchi Y, Kataoka H, Kawaguchi T, Ohtsuki M et al. FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol 1998; 160: 5037–5044.

    CAS  PubMed  Google Scholar 

  29. Kiuchi M, Adachi K, Kohara T, Minoguchi M, Hanano T, Aoki Y et al. Synthesis and immunosuppressive activity of 2-substituted 2-aminopropane-1,3-diols and 2-aminoethanols. J Med Chem 2000; 43: 2946–2961.

    Article  CAS  PubMed  Google Scholar 

  30. Budde K, Schmouder RL, Brunkhorst R, Nashan B, Lucker PW, Mayer T et al. First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 2002; 13: 1073–1083.

    CAS  PubMed  Google Scholar 

  31. Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, Yucel B et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 2014; 508: 108–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP et al. Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J 2014; 33: 1454–1473.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stringari C, Edwards RA, Pate KT, Waterman ML, Donovan PJ, Gratton E . Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH. Sci Rep 2012; 2: 568.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maceyka M, Harikumar KB, Milstien S, Spiegel S . Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 2012; 22: 50–60.

    Article  CAS  PubMed  Google Scholar 

  35. Hait NC, Wise LE, Allegood JC, O'Brien M, Avni D, Reeves TM et al. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nat Neurosci 2014; 17: 971–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnstone RW . Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002; 1: 287–299.

    Article  CAS  PubMed  Google Scholar 

  37. Chen B, Roy SG, McMonigle RJ, Keebaugh A, McCracken AN, Selwan E et al. Azacyclic FTY720 analogues that limit nutrient transporter expression but lack S1P receptor activity and negative chronotropic effects offer a novel and effective strategy to kill cancer cells in vivo. ACS Chem Biol 2016; 11: 409–414.

    Article  CAS  PubMed  Google Scholar 

  38. Billich A, Bornancin F, Devay P, Mechtcheriakova D, Urtz N, Baumruker T . Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem 2003; 278: 47408–47415.

    Article  CAS  PubMed  Google Scholar 

  39. Nagaoka Y, Otsuki K, Fujita T, Uesato S . Effects of phosphorylation of immunomodulatory agent FTY720 (fingolimod) on antiproliferative activity against breast and colon cancer cells. Biol Pharm Bull 2008; 31: 1177–1181.

    Article  CAS  PubMed  Google Scholar 

  40. Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol Med 2013; 5: 105–121.

    Article  CAS  PubMed  Google Scholar 

  41. Don AS, Martinez-Lamenca C, Webb WR, Proia RL, Roberts E, Rosen H . Essential requirement for sphingosine kinase 2 in a sphingolipid apoptosis pathway activated by FTY720 analogues. J Biol Chem 2007; 282: 15833–15842.

    Article  CAS  PubMed  Google Scholar 

  42. Mani R, Chiang CL, Frissora FW, Yan R, Mo X, Baskar S et al. ROR1-targeted delivery of OSU-2S, a nonimmunosuppressive FTY720 derivative, exerts potent cytotoxicity in mantle-cell lymphoma in vitro and in vivo. Exp Hematol 2015; 43: e772.

    Article  Google Scholar 

  43. Jary E, Bee T, Walker SR, Chung SK, Seo KC, Morris JC et al. Elimination of a hydroxyl group in FTY720 dramatically improves the phosphorylation rate. Mol Pharmacol 2010; 78: 685–692.

    Article  CAS  PubMed  Google Scholar 

  44. Vessey DA, Kelley M, Zhang J, Li L, Tao R, Karliner JS . Dimethylsphingosine and FTY720 inhibit the SK1 form but activate the SK2 form of sphingosine kinase from rat heart. J Biochem Mol Toxicol 2007; 21: 273–279.

    Article  CAS  PubMed  Google Scholar 

  45. Baek DJ, MacRitchie N, Anthony NG, Mackay SP, Pyne S, Pyne NJ et al. Structure-activity relationships and molecular modeling of sphingosine kinase inhibitors. J Med Chem 2013; 56: 9310–9327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rex K, Jeffries S, Brown ML, Carlson T, Coxon A, Fajardo F et al. Sphingosine kinase activity is not required for tumor cell viability. PLoS One 2013; 8: e68328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schnute ME, McReynolds MD, Kasten T, Yates M, Jerome G, Rains JW et al. Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 2012; 444: 79–88.

    Article  CAS  PubMed  Google Scholar 

  48. Chalfant CE, Szulc Z, Roddy P, Bielawska A, Hannun YA . The structural requirements for ceramide activation of serine-threonine protein phosphatases. J Lipid Res 2004; 45: 496–506.

    Article  CAS  PubMed  Google Scholar 

  49. Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA . Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 1993; 268: 15523–15530.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tricia Nguyen, Dean Nguyen, Stephanie De Vera, and Jordan Thompson for their contributions, and David Fruman, Leah Siskind, Mari Kono, and Richard Proia for generously providing reagents. This work was supported by the NIH [R01GM089919, R21CA178230 and T32CA009054], the American Cancer Society [RSG-11-111-01-CDD], the William Lawrence Blanche Hughes Foundation, and the Wellcome Trust [098051]. MEFs were provided by the Sphingolipid Animal Cancer Pathobiology Core supported by the NIH [P01-CA97132].

Author contributions

Conceptualization: ANM, SH and ALE; carried out the methodology: all authors; carried out the investigation: ANM, RJM, JT, RF, MSP, BC, AK, ES, SAB, SMK, SGR, GL, DF, LS, CB, NM, AJS and SC; involved in collection of resources: CB, AJS, SC and MM; writing of the manuscript; first draft written by ANM and ALE, comments solicited from all authors; visualization: ANM, MSP, BC, NM, SH and ALE; supervision: SC, AH, MTK, SH and ALE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A L Edinger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCracken, A., McMonigle, R., Tessier, J. et al. Phosphorylation of a constrained azacyclic FTY720 analog enhances anti-leukemic activity without inducing S1P receptor activation. Leukemia 31, 669–677 (2017). https://doi.org/10.1038/leu.2016.244

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.244

This article is cited by

Search

Quick links