Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myelogenous leukemia

Cytogenetic landscape and impact in blast phase of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy

Abstract

The landscape of additional chromosomal alterations (ACAs) and their impact in chronic myeloid leukemia, blast phase (CML-BP) treated with tyrosine kinase inhibitors (TKIs) have not been well studied. Here, we investigated a cohort of 354 CML-BP patients treated with TKIs. We identified +8, an extra Philadelphia chromosome (Ph), 3q26.2 rearrangement, −7 and isochromosome 17q (i(17q)) as the major-route changes with a frequency of over 10%. In addition, +21 and +19 had a frequency of over 5%. These ACAs demonstrated lineage specificity: +8, 3q26.2 rearrangement, i(17q) and +19 were significantly more common in myeloid BP, and −7 more common in lymphoid BP; +Ph and +21 were equally distributed between two groups. Pearson correlation analysis revealed clustering of common ACAs into two groups: 3q26.2 rearrangement, −7 and i(17q) formed one group, and other ACAs formed another group. The grouping correlated with risk stratification of ACAs in CML, chronic phase. Despite the overall negative prognostic impact of ACAs, stratification of ACAs into major vs minor-route changes provided no prognostic relevance in CML-BP. The emergence of 3q26.2 rearrangement as a major-route change in the TKI era correlated with a high frequency of ABL1 mutations, supporting a role for TKI resistance in the changing cytogenetic landscape in CML-BP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Johansson B, Fioretos T, Mitelman F . Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 2002; 107: 76–94.

    Article  CAS  Google Scholar 

  2. Fabarius A, Leitner A, Hochhaus A, Müller MC, Hanfstein B, Haferlach C et al. Impact of additional cytogenetic aberrations at diagnosis on prognosis of CML: long-term observation of 1151 patients from the randomized CML Study IV. Blood 2011; 118: 6760–6768.

    Article  CAS  Google Scholar 

  3. Cortes J, O'Dwyer ME . Clonal evolution in chronic myelogenous leukemia. Hematol Oncol Clin North Am 2004; 18: 671–684.

    Article  Google Scholar 

  4. Chen Z, Cortes JE, Jorgensen JL, Wang W, Yin CC, You MJ et al. Differential impact of additional chromosomal abnormalities in myeloid vs lymphoid blast phase of chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia 30: 1606–1609.

    Article  CAS  Google Scholar 

  5. Mitelman F, Levan G, Nilsson PG, Brandt L . Non-random karyotypic evolution in chronic myeloid leukemia. Int J Cancer 1976; 18: 24–30.

    Article  CAS  Google Scholar 

  6. Mitelman F . The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma 1993; 11: 11–15.

    Article  Google Scholar 

  7. Luatti S, Castagnetti F, Marzocchi G, Baldazzi C, Gugliotta G, Iacobucci I et al. Additional chromosomal abnormalities in Philadelphia-positive clone: adverse prognostic influence on frontline imatinib therapy: a GIMEMA Working Party on CML analysis. Blood 2012; 120: 761–767.

    Article  CAS  Google Scholar 

  8. Hochhaus A . Educational session: managing chronic myeloid leukemia as a chronic disease. Hematology Am Soc Hematol Educ Program 2011; 2011: 128–135.

    Article  Google Scholar 

  9. Leitner AA, Hochhaus A, Muller MC . Current treatment concepts of CML. Curr Cancer Drug Targets 2011; 11: 31–43.

    Article  CAS  Google Scholar 

  10. Pfirrmann M, Baccarani M, Saussele S, Guilhot J, Cervantes F, Ossenkoppele G et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia 2016; 30: 48–56.

    Article  CAS  Google Scholar 

  11. Hochhaus A, Ernst T, Eigendorff E, La Rosee P . Causes of resistance and treatment choices of second- and third-line treatment in chronic myelogenous leukemia patients. Ann Hematol 2015; 94: S133–S140.

    Article  Google Scholar 

  12. Baccarani M, Soverini S, De Benedittis C . Molecular monitoring and mutations in chronic myeloid leukemia: how to get the most out of your tyrosine kinase inhibitor. Am Soc Clin Oncol Educ Book 2014, 167–175.

    Article  Google Scholar 

  13. Schoch C, Haferlach T, Kern W, Schnittger S, Berger U, Hehlmann R et al. Occurrence of additional chromosome aberrations in chronic myeloid leukemia patients treated with imatinib mesylate. Leukemia 2003; 17: 461–463.

    Article  CAS  Google Scholar 

  14. Cortes JE, Talpaz M, Giles F, O'Brien S, Rios MB, Shan J et al. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood 2003; 101: 3794–3800.

    Article  CAS  Google Scholar 

  15. Fabarius A, Haferlach C, Muller MC, Erben P, Lahaye T, Giehl M et al. Dynamics of cytogenetic aberrations in Philadelphia chromosome positive and negative hematopoiesis during dasatinib therapy of chronic myeloid leukemia patients after imatinib failure. Haematologica 2007; 92: 834–837.

    Article  CAS  Google Scholar 

  16. Haferlach C, Bacher U, Schnittger S, Weiss T, Kern W, Haferlach T . Similar patterns of chromosome abnormalities in CML occur in addition to the Philadelphia chromosome with or without tyrosine kinase inhibitor treatment. Leukemia 2010; 24: 638–640.

    Article  CAS  Google Scholar 

  17. Saussele S, Silver RT . Management of chronic myeloid leukemia in blast crisis. Ann Hematol 2015; 94: S159–S165.

    Article  Google Scholar 

  18. Jabbour EJ, Hughes TP, Cortes JE, Kantarjian HM, Hochhaus A . Potential mechanisms of disease progression and management of advanced-phase chronic myeloid leukemia. Leuk Lymphoma 2014; 55: 1451–1462.

    Article  CAS  Google Scholar 

  19. Shaffer LG, McGowan-Jordan J, Schmid M . An International System for Human Cytogenetic Nomenclature (2013). S. Karger AG: Basel, Switzerland, 2013.

    Google Scholar 

  20. Baccarani M, Castagnetti F, Gugliotta G, Rosti G . A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol 2015; 94: S141–S147.

    Article  Google Scholar 

  21. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia. Blood 2013; 122: 872–884.

    Article  CAS  Google Scholar 

  22. Wang W, Cortes JE, Tang G, Khoury JD, Wang S, Bueso-Ramos CE et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood 2016; 127: 2742–2750.

    Article  CAS  Google Scholar 

  23. Wang W, Cortes JE, Lin P, Beaty MW, Ai D, Amin HM et al. Clinical and prognostic significance of 3q26.2 and other chromosome 3 abnormalities in CML in the era of tyrosine kinase inhibitors. Blood 2015; 126: 1699–1706.

    Article  CAS  Google Scholar 

  24. Verma D, Kantarjian H, Shan J, O'Brien S, Estrov Z, Garcia-Manero G et al. Survival outcomes for clonal evolution in chronic myeloid leukemia patients on second generation tyrosine kinase inhibitor therapy. Cancer 2010; 116: 2673–2681.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fabarius A, Kalmanti L, Dietz CT, Lauseker M, Rinaldetti S, Haferlach C et al. Impact of unbalanced minor route versus major route karyotypes at diagnosis on prognosis of CML. Ann Hematol 2015; 94: 2015–2024.

    Article  Google Scholar 

  26. Greulich-Bode KM, Heinze B . On the power of additional and complex chromosomal aberrations in CML. Curr Genomics 2012; 13: 471–476.

    Article  CAS  Google Scholar 

  27. Muvarak N, Nagaria P, Rassool FV . Genomic instability in chronic myeloid leukemia: targets for therapy? Curr Hematol Malig Rep 2012; 7: 94–102.

    Article  CAS  Google Scholar 

  28. Skorski T . Genetic mechanisms of chronic myeloid leukemia blastic transformation. Curr Hematol Malig Rep 2012; 7: 87–93.

    Article  Google Scholar 

  29. Wang W, Cortes JE, Lin P, Khoury JD, Ai D, Tang Z et al. Impact of trisomy 8 on treatment response and survival of patients with chronic myelogenous leukemia in the era of tyrosine kinase inhibitors. Leukemia 2015; 29: 2263–2266.

    Article  CAS  Google Scholar 

  30. Honda H, Nagamachi A, Inaba T . -7/7q- syndrome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene 2015; 34: 2413–2425.

    Article  CAS  Google Scholar 

  31. Hussain FT, Nguyen EP, Raza S, Knudson R, Pardanani A, Hanson CA et al. Sole abnormalities of chromosome 7 in myeloid malignancies: spectrum, histopathologic correlates, and prognostic implications. Am J Hematol 2012; 87: 684–686.

    Article  CAS  Google Scholar 

  32. Meggendorfer M, Haferlach C, Zenger M, Macijewski K, Kern W, Haferlach T . The landscape of myeloid neoplasms with isochromosome 17q discloses a specific mutation profile and is characterized by an accumulation of prognostically adverse molecular markers. Leukemia 2016; 30: 1624–1627.

    Article  CAS  Google Scholar 

  33. Kanagal-Shamanna R, Bueso-Ramos CE, Barkoh B, Lu G, Wang S, Garcia-Manero G et al. Myeloid neoplasms with isolated isochromosome 17q represent a clinicopathologic entity associated with myelodysplastic/myeloproliferative features, a high risk of leukemic transformation, and wild-type TP53. Cancer 2012; 118: 2879–2888.

    Article  CAS  Google Scholar 

  34. Visconte V, Tabarroki A, Zhang L, Hasrouni E, Gerace C, Frum R et al. Clinicopathologic and molecular characterization of myeloid neoplasms harboring isochromosome 17(q10). Am J Hematol 2014; 89: 862.

    Article  Google Scholar 

  35. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011; 118: 1208–1215.

    Article  CAS  Google Scholar 

  36. Hochhaus A, La Rosee P, Muller MC, Ernst T, Cross NC . Impact of BCR-ABL mutations on patients with chronic myeloid leukemia. Cell Cycle 2011; 10: 250–260.

    Article  CAS  Google Scholar 

  37. Soverini S, de Benedittis C, Mancini M, Martinelli G . Mutations in the BCR-ABL1 kinase domain and elsewhere in chronic myeloid leukemia. Clin Lymphoma Myeloma Leuk 2015; 15: S120–S128.

    Article  Google Scholar 

  38. Rumpold H, Webersinke G . Molecular pathogenesis of Philadelphia-positive chronic myeloid leukemia - is it all BCR-ABL? Curr Cancer Drug Targets 2011; 11: 3–19.

    Article  CAS  Google Scholar 

  39. Radich JP . The biology of chronic myelogenous leukemia progression: who, what, where, and why? Hematol Oncol Clin North Am 2011; 25: 967–980.

    Article  Google Scholar 

  40. Melo JV, Barnes DJ . Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 2007; 7: 441–453.

    Article  CAS  Google Scholar 

  41. Karbasian Esfahani M, Morris EL, Dutcher JP, Wiernik PH . Blastic phase of chronic myelogenous leukemia. Curr Treat Options Oncol 2006; 7: 189–199.

    Article  Google Scholar 

  42. Landau DA, Carter SL, Getz G, Wu CJ . Clonal evolution in hematological malignancies and therapeutic implications. Leukemia 2014; 28: 34–43.

    Article  CAS  Google Scholar 

  43. Haaß W, Kleiner H, Weiß C, Haferlach C, Schlegelberger B, Müller MC et al. Clonal evolution and blast crisis correlate with enhanced proteolytic activity of separase in BCR-ABL b3a2 fusion type CML under imatinib therapy. PLoS One 2015; 10: e0129648.

    Article  Google Scholar 

  44. Bolton-Gillespie E, Schemionek M, Klein HU, Flis S, Hoser G, Lange T et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood 2013; 121: 4175–4183.

    Article  CAS  Google Scholar 

  45. Ilaria RL Jr . Pathobiology of lymphoid and myeloid blast crisis and management issues. Hematology Am Soc Hematol Educ Program 2005, 188–194.

    Article  Google Scholar 

  46. Schnittger S, Bacher U, Dicker F, Kern W, Alpermann T, Haferlach T et al. Associations between imatinib resistance conferring mutations and Philadelphia positive clonal cytogenetic evolution in CML. Genes Chromosomes Cancer 2010; 49: 910–918.

    Article  CAS  Google Scholar 

  47. Schmidt M, Rinke J, Schäfer V, Schnittger S, Kohlmann A, Obstfelder E et al. Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia 2014; 28: 2292–2299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Hu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Shao, C., Wang, W. et al. Cytogenetic landscape and impact in blast phase of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia 31, 585–592 (2017). https://doi.org/10.1038/leu.2016.231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.231

This article is cited by

Search

Quick links