Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Dynamics of microvesicle generation in B-cell chronic lymphocytic leukemia: implication in disease progression

Abstract

Previously, we reported that B-cell chronic lymphocytic leukemia (CLL) patients contained elevated levels of microvesicles (MVs). However, given the quiescent nature of CLL B-cells and the relative indolence of the disease, the dynamics of MV generation and their unique phenotypes are not clearly defined. In this study, we find that CLL B-cells generate MVs spontaneously and can be further induced by B-cell receptor-ligation. Most interestingly, CLL B-cells predominantly generate CD52+ MVs, but not CD19+ MVs in vitro, suggesting preferential usage of CD52 into leukemic-MVs and that the CLL plasma MV phenotypes corroborate well with the in vitro findings. Importantly, we detected increased accumulation of CD52+ MVs in previously untreated CLL patients with progressive disease. Finally, sequential studies on MVs in pre- and post-therapy CLL patients demonstrate that although the plasma CD52+ MV levels drop significantly after therapy in most and remain at low levels in some patients, a trend of increased accumulation of CD52+ MVs was detected in majority of post-therapy CLL patients (25 of 33). In total, this study emphasizes that dynamic accumulation of CD52+ MVs in plasma can be used to study CLL progression and may be a useful biomarker for patients as they progress and require therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lee TH, D'Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J . Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular 'debris'. Sem Immunopathol 2011; 33: 455–467.

    Article  Google Scholar 

  2. Rak J . Microparticles in cancer. Semin Thromb Hemost 2010; 36: 888–906.

    Article  CAS  PubMed  Google Scholar 

  3. Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE . Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood 2010; 115: 1755–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE . VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 2004; 104: 788–794.

    Article  CAS  PubMed  Google Scholar 

  5. Lee YK, Shanafelt TD, Bone ND, Strege AK, Jelinek DF, Kay NE . VEGF receptors on chronic lymphocytic leukemia (CLL) B cells interact with STAT 1 and 3: implication for apoptosis resistance. Leukemia 2005; 19: 513–523.

    Article  CAS  PubMed  Google Scholar 

  6. Krysov S, Steele AJ, Coelho V, Linley A, Sanchez Hidalgo M, Carter M et al. Stimulation of surface IgM of chronic lymphocytic leukemia cells induces an unfolded protein response dependent on BTK and SYK. Blood 2014; 124: 3101–3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forconi F, Potter KN, Wheatley I, Darzentas N, Sozzi E, Stamatopoulos K et al. The normal IGHV1-69-derived B-cell repertoire contains stereotypic patterns characteristic of unmutated CLL. Blood 2010; 115: 71–77.

    Article  CAS  PubMed  Google Scholar 

  8. Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Durig J et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 2012; 209: 2183–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G . B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2011; 118: 4313–4320.

    Article  CAS  PubMed  Google Scholar 

  10. Cambier JC, Gauld SB, Merrell KT, Vilen BJ . B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol 2007; 7: 633–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yeh YY, Ozer HG, Lehman AM, Maddocks K, Yu L, Johnson AJ et al. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood 2015; 125: 3297–3305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sinha S, Boysen J, Nelson M, Secreto C, Warner SL, Bearss DJ et al. Targeted Axl inhibition primes chronic lymphocytic leukemia B cells to apoptosis and shows synergistic/additive effects in combination with BTK inhibitors. Clin Cancer Res 2015; 21: 2115–2126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghosh AK, Secreto C, Boysen J, Sassoon T, Shanafelt TD, Mukhopadhyay D et al. The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood 2011; 117: 1928–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P . Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998; 91: 2387–2396.

    CAS  PubMed  Google Scholar 

  15. Sinha S, Boysen J, Nelson M, Secreto C, Warner SL, Bearss D et al. Targeted inhibition of Axl primes chronic lymphocytic leukemia B-cells for apoptosis: synergistic/additive effects in combination with bruton tyrosine kinase inhibitors. Blood 2014; 124: 1946.

    Google Scholar 

  16. Shanafelt TD, LaPlant BR, Call TG, Nikcevich D, Leis JF, Ding W et al. Randomized phase II trial of pentostatin, cyclophosphamide, and rituximab with or without concurrent avastin for previously untreated B-chronic lymphocytic leukemia (CLL). Blood 2014; 124: 4673.

    Google Scholar 

  17. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119: 1182–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68: 2667–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernal A, Pastore RD, Asgary Z, Keller SA, Cesarman E, Liou HC et al. Survival of leukemic B cells promoted by engagement of the antigen receptor. Blood 2001; 98: 3050–3057.

    Article  CAS  PubMed  Google Scholar 

  21. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  PubMed  Google Scholar 

  22. Zupo S, Cutrona G, Mangiola M, Ferrarini M . Role of surface IgM and IgD on survival of the cells from B-cell chronic lymphocytic leukemia. Blood 2002; 99: 2277–2278.

    Article  CAS  PubMed  Google Scholar 

  23. Burger JA, Quiroga MP, Hartmann E, Burkle A, Wierda WG, Keating MJ et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 2009; 113: 3050–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao X, Lapalombella R, Joshi T, Cheney C, Gowda A, Hayden-Ledbetter MS et al. Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood 2007; 110: 2569–2577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ . Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20: 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  26. Hale G, Bright S, Chumbley G, Hoang T, Metcalf D, Munro AJ et al. Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood 1983; 62: 873–882.

    CAS  PubMed  Google Scholar 

  27. Hale G, Xia MQ, Tighe HP, Dyer MJ, Waldmann H . The CAMPATH-1 antigen (CDw52). Tissue Antigens 1990; 35: 118–127.

    Article  CAS  PubMed  Google Scholar 

  28. Xia MQ, Hale G, Waldmann H . Efficient complement-mediated lysis of cells containing the CAMPATH-1 (CDw52) antigen. Mol Immunol 1993; 30: 1089–1096.

    Article  CAS  PubMed  Google Scholar 

  29. Hederer RA, Guntermann C, Miller N, Nagy P, Szollosi J, Damjanovich S et al. The CD45 tyrosine phosphatase regulates Campath-1H (CD52)-induced TCR-dependent signal transduction in human T cells. Int Immunol 2000; 12: 505–516.

    Article  CAS  PubMed  Google Scholar 

  30. Albitar M, Do KA, Johnson MM, Giles FJ, Jilani I, O'Brien S et al. Free circulating soluble CD52 as a tumor marker in chronic lymphocytic leukemia and its implication in therapy with anti-CD52 antibodies. Cancer 2004; 101: 999–1008.

    Article  CAS  PubMed  Google Scholar 

  31. Hale G, Waldmann H . From laboratory to clinic: the story of CAM PA TH-1. Methods Mol Med 2000; 40: 243–266.

    CAS  PubMed  Google Scholar 

  32. Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee BH, Qian J et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol 2013; 14: 741–748.

    Article  CAS  PubMed  Google Scholar 

  33. Fujimoto M, Poe JC, Inaoki M, Tedder TF . CD19 regulates B lymphocyte responses to transmembrane signals. Semin Immunol. 1998; 10: 267–277.

    Article  CAS  PubMed  Google Scholar 

  34. Poe JC, Minard-Colin V, Kountikov EI, Haas KM, Tedder TF . A c-Myc and surface CD19 signaling amplification loop promotes B cell lymphoma development and progression in mice. J Immunol 2012; 189: 2318–2325.

    Article  CAS  PubMed  Google Scholar 

  35. Tedder TF . CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5: 572–577.

    Article  CAS  PubMed  Google Scholar 

  36. Del Nagro CJ, Otero DC, Anzelon AN, Omori SA, Kolla RV, Rickert RC . CD19 function in central and peripheral B-cell development. Immunol Res 2005; 31: 119–131.

    Article  CAS  PubMed  Google Scholar 

  37. Ishiura N, Nakashima H, Watanabe R, Kuwano Y, Adachi T, Takahashi Y et al. Differential phosphorylation of functional tyrosines in CD19 modulates B-lymphocyte activation. Eur J Immunol 2010; 40: 1192–1204.

    Article  CAS  PubMed  Google Scholar 

  38. Fujimoto M, Fujimoto Y, Poe JC, Jansen PJ, Lowell CA, DeFranco AL et al. CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 2000; 13: 47–57.

    Article  CAS  PubMed  Google Scholar 

  39. Chung EY, Psathas JN, Yu D, Li Y, Weiss MJ, Thomas-Tikhonenko A . CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis. J Clin Invest 2012; 122: 2257–2266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van Zelm MC, Reisli I, van der Burg M, Castano D, van Noesel CJ, van Tol MJ et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med 2006; 354: 1901–1912.

    Article  CAS  PubMed  Google Scholar 

  41. Tedder TF, Inaoki M, Sato S . The CD19-CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 1997; 6: 107–118.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a RO1 research fund from the National Cancer Institute CA170006 and partly, by a fund from the CLL Global Research Foundation to AKG. We wish to acknowledge the contribution of all the CLL patients who consented and donated blood samples at the time of their visits to the Mayo Clinic, Rochester, MN, USA and the Stephenson Cancer Center, Oklahoma City, OK, USA.

Author contributions

JB and MN performed experiments, analyzed data and created figures; GM, GPM and SS performed experiments, and created figures; MG performed experiments; SKV performed statistical analysis of the data; TDS provided clinical samples with relevant information; NEK provided clinical samples with relevant information, analyzed data and edited the manuscript; AKG conceived and supervised the project, designed the research, analyzed data and wrote the manuscript; and all authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K Ghosh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boysen, J., Nelson, M., Magzoub, G. et al. Dynamics of microvesicle generation in B-cell chronic lymphocytic leukemia: implication in disease progression. Leukemia 31, 350–360 (2017). https://doi.org/10.1038/leu.2016.217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.217

This article is cited by

Search

Quick links