Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunotherapy

The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia

Abstract

Immune dysfunctions in chronic lymphocytic leukemia (CLL) contribute to tumor immune escape and attenuate immune-based therapies. Monocytes/macrophages represent key components of cancer immune surveillance and effectors for antibody-mediated antitumor effects. Monocytes display an altered subset composition in CLL. Moreover, we find a changed metabolic phenotype: glucose uptake, glucose transporters and expression of glycolytic molecules are reduced. Our data establish a link between glycolytic competence and monocyte-mediated phagocytosis of tumor cells. Furthermore, we report that CLL monocytes express Bruton’s tyrosine kinase (BTK). Our observations suggest that using BTK inhibitors in CLL might further aggravate the observed immune metabolic defects in monocytes. Triggering the programmed cell death-1 (PD-1) checkpoint on monocytes hampers glycolysis, phagocytosis and BTK signaling. Conversely, disrupting PD-1/PD-L1 signaling reverses these immune metabolic dysfunctions. Taken together, our findings imply a novel metabolic interplay between CLL cells and monocytes and that blocking PD-1/PD-L1 might restore metabolic together with antitumor activity of CLL monocytes/macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    Article  PubMed  Google Scholar 

  2. Morrison VA . The infectious complications of chronic lymphocytic leukemia. Semin Oncol 1998; 25: 98–106.

    CAS  PubMed  Google Scholar 

  3. Forconi F, Moss P . Perturbation of the normal immune system in patients with CLL. Blood 2015; 126: 573–581.

    Article  CAS  PubMed  Google Scholar 

  4. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118: 2427–2437.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brusa D, Serra S, Coscia M, Rossi D, D'Arena G, Laurenti L et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 2013; 98: 953–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.

    Article  CAS  PubMed  Google Scholar 

  7. Jurado-Camino T, Cordoba R, Esteban-Burgos L, Hernandez-Jimenez E, Toledano V, Hernandez-Rivas JA et al. Chronic lymphocytic leukemia: a paradigm of innate immune cross-tolerance. J Immunol 2015; 194: 719–727.

    Article  CAS  PubMed  Google Scholar 

  8. Maffei R, Bulgarelli J, Fiorcari S, Bertoncelli L, Martinelli S, Guarnotta C et al. The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica 2013; 98: 1115–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jitschin R, Braun M, Buttner M, Dettmer-Wilde K, Bricks J, Berger J et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood 2014; 124: 750–760.

    Article  CAS  PubMed  Google Scholar 

  10. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331: 1612–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bruns H, Buttner M, Fabri M, Mougiakakos D, Bittenbring JT, Hoffmann MH et al. Vitamin D-dependent induction of cathelicidin in human macrophages results in cytotoxicity against high-grade B cell lymphoma. Sci Transl Med 2015; 7: 282ra247.

    Article  Google Scholar 

  12. Pallasch CP, Leskov I, Braun CJ, Vorholt D, Drake A, Soto-Feliciano YM et al. Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 2014; 156: 590–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Byrd JC, Jones JJ, Woyach JA, Johnson AJ, Flynn JM . Entering the era of targeted therapy for chronic lymphocytic leukemia: impact on the practicing clinician. J Clin Oncol 2014; 32: 3039–3047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weiskopf K, Weissman IL . Macrophages are critical effectors of antibody therapies for cancer. MAbs 2015; 7: 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015; 162: 1229–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014; 345: 1250684.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Biswas SK, Mantovani A . Orchestration of metabolism by macrophages. Cell Metab 2012; 15: 432–437.

    Article  CAS  PubMed  Google Scholar 

  18. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G et al. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood 2015; 125: 3905–3916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 2015; 6: 6692.

    Article  CAS  PubMed  Google Scholar 

  20. McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D et al. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Emicro-TCL1 CLL mouse model. Blood 2015; 126: 212–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood 2015; 126: 203–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidl C, Renner K, Peter K, Eder R, Lassmann T, Balwierz PJ et al. Transcription and enhancer profiling in human monocyte subsets. Blood 2014; 123: e90–e99.

    Article  CAS  PubMed  Google Scholar 

  23. Palmer CS, Anzinger JJ, Zhou J, Gouillou M, Landay A, Jaworowski A et al. Glucose transporter 1-expressing proinflammatory monocytes are elevated in combination antiretroviral therapy-treated and untreated HIV+ subjects. J Immunol 2014; 193: 5595–5603.

    Article  CAS  PubMed  Google Scholar 

  24. Izquierdo E, Cuevas VD, Fernandez-Arroyo S, Riera-Borrull M, Orta-Zavalza E, Joven J et al. Reshaping of human macrophage polarization through modulation of glucose catabolic pathways. J Immunol 2015; 195: 2442–2451.

    Article  CAS  PubMed  Google Scholar 

  25. Tan Z, Xie N, Cui H, Moellering DR, Abraham E, Thannickal VJ et al. Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol 2015; 194: 6082–6089.

    Article  CAS  PubMed  Google Scholar 

  26. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 2005; 142: 481–489.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sbarra AJ, Karnovsky ML . The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem 1959; 234: 1355–1362.

    CAS  PubMed  Google Scholar 

  28. Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 2004; 199: 1659–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Minard-Colin V, Xiu Y, Poe JC, Horikawa M, Magro CM, Hamaguchi Y et al. Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV. Blood 2008; 112: 1205–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dimitriadis G, Maratou E, Boutati E, Psarra K, Papasteriades C, Raptis SA . Evaluation of glucose transport and its regulation by insulin in human monocytes using flow cytometry. Cytometry A 2005; 64: 27–33.

    Article  PubMed  Google Scholar 

  31. Kragballe K, Beck-Nielsen H, Pedersen O, Ellegaard J, Sorensen NS . Monocyte-mediated antibody-dependent cytotoxicity. Modulation by glycolysis and insulin. Scand J Haematol 1981; 26: 137–144.

    Article  CAS  PubMed  Google Scholar 

  32. Church AK, VanDerMeid KR, Baig NA, Baran AM, Witzig TE, Nowakowski GS et al. Anti-CD20 monoclonal antibody-dependent phagocytosis of chronic lymphocytic leukaemia cells by autologous macrophages. Clin Exp Immunol 2016; 183: 90–101.

    Article  CAS  PubMed  Google Scholar 

  33. Stiff A, Trikha P, Wesolowski R, Kendra K, Hsu V, Uppati S et al. Myeloid-derived suppressor cells express Bruton's tyrosine kinase and can be depleted in tumor bearing hosts by ibrutinib treatment. Cancer Res 2016; 76: 2125–2136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Futatani T, Miyawaki T, Tsukada S, Hashimoto S, Kunikata T, Arai S et al. Deficient expression of Bruton's tyrosine kinase in monocytes from X-linked agammaglobulinemia as evaluated by a flow cytometric analysis and its clinical application to carrier detection. Blood 1998; 91: 595–602.

    CAS  PubMed  Google Scholar 

  35. Di Paolo JA, Huang T, Balazs M, Barbosa J, Barck KH, Bravo BJ et al. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 2011; 7: 41–50.

    Article  CAS  PubMed  Google Scholar 

  36. Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM, Roberts MF et al. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 2006; 107: 4458–4465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci USA 2009; 106: 6303–6308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat Med 2010; 16: 452–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013; 121: 1612–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giannoni P, Pietra G, Travaini G, Quarto R, Shyti G, Benelli R et al. Chronic lymphocytic leukemia nurse-like cells express hepatocyte growth factor receptor (c-MET) and indoleamine 2,3-dioxygenase and display features of immunosuppressive type 2 skewed macrophages. Haematologica 2014; 99: 1078–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 2010; 33: 375–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chung J, Serezani CH, Huang SK, Stern JN, Keskin DB, Jagirdar R et al. Rap1 activation is required for Fc gamma receptor-dependent phagocytosis. J Immunol 2008; 181: 5501–5509.

    Article  CAS  PubMed  Google Scholar 

  43. Taylor RP, Lindorfer MA . Antigenic modulation and rituximab resistance. Semin Hematol 2010; 47: 124–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pearce EL, Poffenberger MC, Chang CH, Jones RG . Fueling immunity: insights into metabolism and lymphocyte function. Science 2013; 342: 1242454.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 2016; 17: 95–103.

    Article  CAS  PubMed  Google Scholar 

  46. Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014; 15: 846–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011; 186: 3299–3303.

    Article  CAS  PubMed  Google Scholar 

  48. O'Neill LA, Pearce EJ . Immunometabolism governs dendritic cell and macrophage function. J Exp Med 2016; 213: 15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Audrito V, Serra S, Brusa D, Mazzola F, Arruga F, Vaisitti T et al. Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood 2015; 125: 111–123.

    Article  CAS  PubMed  Google Scholar 

  50. Guminska M, Ptak W, Zembala M . Macrophage metabolism during phagocytosis and digestion of normal and IgG antibody-coated sheep erythrocytes. Enzyme 1975; 19: 24–37.

    Article  CAS  PubMed  Google Scholar 

  51. Ayre SG, Perez Garcia y Bellon D, Perez Garcia D Jr . Neoadjuvant low-dose chemotherapy with insulin in breast carcinomas. Eur J Cancer 1990; 26: 1262–1263.

    Article  CAS  PubMed  Google Scholar 

  52. Saiya-Cork K, Collins R, Parkin B, Ouillette P, Kuizon E, Kujawski L et al. A pathobiological role of the insulin receptor in chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 2679–2692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fiorcari S, Martinelli S, Bulgarelli J, Audrito V, Zucchini P, Colaci E et al. Lenalidomide interferes with tumor-promoting properties of nurse-like cells in chronic lymphocytic leukemia. Haematologica 2015; 100: 253–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu L, Adams M, Carter T, Chen R, Muller G, Stirling D et al. lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin Cancer Res 2008; 14: 4650–4657.

    Article  CAS  PubMed  Google Scholar 

  55. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE et al. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab 2015; 21: 65–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jongstra-Bilen J, Puig Cano A, Hasija M, Xiao H, Smith CI, Cybulsky MI . Dual functions of Bruton's tyrosine kinase and Tec kinase during Fcgamma receptor-induced signaling and phagocytosis. J Immunol 2008; 181: 288–298.

    Article  CAS  PubMed  Google Scholar 

  57. Da Roit F, Engelberts PJ, Taylor RP, Breij EC, Gritti G, Rambaldi A et al. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy. Haematologica 2015; 100: 77–86.

    Article  CAS  PubMed  Google Scholar 

  58. Skarzynski M, Niemann CU, Lee YS, Martyr S, Maric I, Salem D et al. Interactions between ibrutinib and anti-CD20 antibodies: competing effects on the outcome of combination therapy. Clin Cancer Res 2016; 22: 86–95.

    Article  CAS  PubMed  Google Scholar 

  59. Pardoll DM . The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. MacFarlane AWt, Jillab M, Plimack ER, Hudes GR, Uzzo RG, Litwin S et al. PD-1 expression on peripheral blood cells increases with stage in renal cell carcinoma patients and is rapidly reduced after surgical tumor resection. Cancer Immunol Res 2014; 2: 320–331.

    Article  CAS  PubMed  Google Scholar 

  61. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T . PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 2001; 98: 13866–13871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hajduch E, Alessi DR, Hemmings BA, Hundal HS . Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Diabetes 1998; 47: 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  63. Hernandez R, Teruel T, Lorenzo M . Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. FEBS Lett 2001; 494: 225–231.

    Article  CAS  PubMed  Google Scholar 

  64. Helliwell PA, Rumsby MG, Kellett GL . Intestinal sugar absorption is regulated by phosphorylation and turnover of protein kinase C betaII mediated by phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent pathways. J Biol Chem 2003; 278: 28644–28650.

    Article  CAS  PubMed  Google Scholar 

  65. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 2014; 20: 61–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 2014; 211: 781–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krause DS, Scadden DT . A hostel for the hostile: the bone marrow niche in hematologic neoplasms. Haematologica 2015; 100: 1376–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the kind assistance of the Core Unit Cell Sorting and Immunomonitoring Erlangen. DM was supported by the IZKF Erlangen, the European Hematology Association (EHA) and the José Carreras Leukemia Foundation. MQ was supported by the IZKF Erlangen. RJ was supported by the ELAN program of the University of Erlangen-Nuremberg. LW was supported by the i-Target program of the Elitenetzwerk Bayern.

Author contributions

MQ, HB, MB and LW performed research and analyzed data. AM and RJ helped designing the study and writing the manuscript. DM designed the study, analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Mougiakakos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qorraj, M., Bruns, H., Böttcher, M. et al. The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia. Leukemia 31, 470–478 (2017). https://doi.org/10.1038/leu.2016.214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.214

This article is cited by

Search

Quick links