Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Survival control of malignant lymphocytes by anti-apoptotic MCL-1

Abstract

Programmed apoptotic cell death is critical to maintain tissue homeostasis and cellular integrity in the lymphatic system. Accordingly, the evasion of apoptosis is a critical milestone for the transformation of lymphocytes on their way to becoming overt lymphomas. The anti-apoptotic BCL-2 family proteins are pivotal regulators of the mitochondrial apoptotic pathway and genetic aberrations in these genes are associated with lymphomagenesis and chemotherapeutic resistance. Pharmacological targeting of BCL-2 is highly effective in certain indolent B-cell lymphomas; however, recent evidence highlights a critical role for the BCL-2 family member MCL-1 in several lymphoma subtypes. MCL-1 is recurrently highly expressed in various kinds of cancer including non-Hodgkin’s lymphoma of B- and T-cell origin. Moreover, both indolent and aggressive forms of lymphoma require MCL-1 for lymphomagenesis and for their continued survival. This review summarizes the role of MCL-1 in B- and T-cell lymphoma and discusses its potential as a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kelly GL, Grabow S, Glaser SP, Fitzsimmons L, Aubrey BJ, Okamoto T et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev 2014; 28: 58–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Grabow S, Delbridge AR, Valente LJ, Strasser A . MCL-1 but not BCL-XL is critical for the development and sustained expansion of thymic lymphoma in p53-deficient mice. Blood 2014; 124: 3939–3946.

    CAS  PubMed  Google Scholar 

  3. Spinner S, Crispatzu G, Yi JH, Munkhbaatar E, Mayer P, Hockendorf U et al. Re-activation of mitochondrial apoptosis inhibits T-cell lymphoma survival and treatment resistance. Leukemia 2016; 30: 1520–1530.

    CAS  PubMed  Google Scholar 

  4. Zhou T, Hu Z, Zhou Z, Guo X, Sha J . Genome-wide analysis of human hotspot intersected genes highlights the roles of meiotic recombination in evolution and disease. BMC Genomics 2013; 14: 67.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Strasser A, Cory S, Adams JM . Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 2011; 30: 3667–3683.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Czabotar PE, Lessene G, Strasser A, Adams JM . Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 2014; 15: 49–63.

    CAS  PubMed  Google Scholar 

  7. Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG . Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. J Mol Biol 2008; 380: 958–971.

    CAS  PubMed  Google Scholar 

  8. Mojsa B, Lassot I, Desagher S . Mcl-1 ubiquitination: unique regulation of an essential survival protein. Cells 2014; 3: 418–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang B, Xie M, Li R, Owonikoko TK, Ramalingam SS, Khuri FR et al. Role of Ku70 in deubiquitination of Mcl-1 and suppression of apoptosis. Cell Death Differ 2014; 21: 1160–1169.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Carroll RG, Hollville E, Martin SJ . Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. Cell Rep 2014; 9: 1538–1553.

    CAS  PubMed  Google Scholar 

  11. Zhang C, Lee S, Peng Y, Bunker E, Giaime E, Shen J et al. PINK1 triggers autocatalytic activation of Parkin to specify cell fate decisions. Curr Biol 2014; 24: 1854–1865.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stewart DP, Koss B, Bathina M, Perciavalle RM, Bisanz K, Opferman JT . Ubiquitin-independent degradation of antiapoptotic MCL-1. Mol Cell Biol 2010; 30: 3099–3110.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mott JL, Kobayashi S, Bronk SF, Gores GJ . mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007; 26: 6133–6140.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong J, Zhang JP, Li B, Zeng C, You K, Chen MX et al. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6 R. Oncogene 2013; 32: 3071–3079.

    CAS  PubMed  Google Scholar 

  15. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007; 21: 3232–3237.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J et al. The landscape of somatic copy-number alteration across human cancers. Nature 2010; 463: 899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Campbell KJ, Bath ML, Turner ML, Vandenberg CJ, Bouillet P, Metcalf D et al. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood 2010; 116: 3197–3207.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rinkenberger JL, Horning S, Klocke B, Roth K, Korsmeyer SJ . Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev 2000; 14: 23–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Craig RW . MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 2002; 16: 444–454.

    CAS  PubMed  Google Scholar 

  20. Fujise K, Zhang D, Liu J, Yeh ET . Regulation of apoptosis and cell cycle progression by MCL1. Differential role of proliferating cell nuclear antigen. J Biol Chem 2000; 275: 39458–39465.

    CAS  PubMed  Google Scholar 

  21. Haschka MD, Soratroi C, Kirschnek S, Hacker G, Hilbe R, Geley S et al. The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest. Nat Commun 2015; 6: 6891.

    CAS  PubMed  Google Scholar 

  22. Perciavalle RM, Stewart DP, Koss B, Lynch J, Milasta S, Bathina M et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 2012; 14: 575–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Bathina M, Lynch J, Koss B, Calabrese C, Frase S et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev 2013; 27: 1351–1364.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomas RL, Roberts DJ, Kubli DA, Lee Y, Quinsay MN, Owens JB et al. Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes Dev 2013; 27: 1365–1377.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    CAS  PubMed  Google Scholar 

  26. Lindqvist LM, Heinlein M, Huang DC, Vaux DL . Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci USA 2014; 111: 8512–8517.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sochalska M, Tuzlak S, Egle A, Villunger A . Lessons from gain- and loss-of-function models of pro-survival Bcl2 family proteins: implications for targeted therapy. FEBS J 2015; 282: 834–849.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Opferman JT, Iwasaki H, Ong CC, Suh H, Mizuno S-i, Akashi K et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science 2005; 307: 1101–1104.

    CAS  PubMed  Google Scholar 

  29. Opferman JT, Letai A, Beard C, Sorcinelli MD, Ong CC, Korsmeyer SJ . Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 2003; 426: 671–676.

    CAS  PubMed  Google Scholar 

  30. Lømo J, Smeland EB, Krajewski S, Reed JC, Blomhoff HK . Expression of the Bcl-2 homologue Mcl-1 correlates with survival of peripheral blood B lymphocytes. Cancer Res 1996; 56: 40–43.

    PubMed  Google Scholar 

  31. Vikstrom I, Carotta S, Luthje K, Peperzak V, Jost PJ, Glaser S et al. Mcl-1 Is essential for germinal center formation and B cell memory. Science 2010; 330: 1095–1099.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Peperzak V, Vikström I, Walker J, Glaser SP, LePage M, Coquery CM et al. Mcl-1 is essential for the survival of plasma cells. Nat Immunol 2013; 14: 290–297.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dzhagalov I, Dunkle A, He YW . The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J Immunol 2008; 181: 521–528.

    CAS  PubMed  Google Scholar 

  34. Dunkle A, Dzhagalov I, He Y-W . Mcl-1 promotes survival of thymocytes by inhibition of Bak in a pathway separate from Bcl-2. Cell Death Diff 2010; 17: 994–1002.

    CAS  Google Scholar 

  35. Tripathi P, Koss B, Opferman JT, Hildeman DA . Mcl-1 antagonizes Bax/Bak to promote effector CD4. Cell Death Diff 2013; 20: 998–1007.

    CAS  Google Scholar 

  36. Chetoui N, Boisvert M, Gendron S, Aoudjit F . Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology 2010; 130: 418–426.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Strasser A, Harris AW, Bath ML, Cory S . Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 1990; 348: 331–333.

    CAS  PubMed  Google Scholar 

  38. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19: 202–208.

    CAS  PubMed  Google Scholar 

  39. Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med 2016; 374: 311–322.

    CAS  PubMed  Google Scholar 

  40. Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF, Munir T et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: a multicentre, open-label, phase 2 study. Lancet Oncol 2016; 17: 768–778.

    CAS  PubMed  Google Scholar 

  41. Zhou P, Levy NB, Xie H, Qian L, Lee CY, Gascoyne RD et al. MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood 2001; 97: 3902–3909.

    CAS  PubMed  Google Scholar 

  42. Grabow S, Delbridge AR, Aubrey BJ, Vandenberg CJ, Strasser A . Loss of a single Mcl-1 allele inhibits MYC-driven lymphomagenesis by sensitizing pro-B cells to apoptosis. Cell Rep 2016; 14: 2337–2347.

    CAS  PubMed  Google Scholar 

  43. Grabow S, Kelly GL, Delbridge AR, Kelly PN, Bouillet P, Adams JM et al. Critical B-lymphoid cell intrinsic role of endogenous MCL-1 in c-MYC-induced lymphomagenesis. Cell Death Dis 2016; 7: e2132.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cho-Vega JH, Rassidakis GZ, Admirand JH, Oyarzo M, Ramalingam P, Paraguya A et al. MCL-1 expression in B-cell non-Hodgkin's lymphomas. Hum Pathol 2004; 35: 1095–1100.

    CAS  PubMed  Google Scholar 

  45. Wenzel S-S, Grau M, Mavis C, Hailfinger S, Wolf A, Madle H et al. MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma. Leukemia 2013; 27: 1381–1390.

    CAS  PubMed  Google Scholar 

  46. Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis 2015; 6: e1593.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells. Blood 2005; 105: 4820–4827.

    CAS  PubMed  Google Scholar 

  48. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  49. Moshynska O, Sankaran K, Pahwa P, Saxena A . Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J Natl Cancer Inst 2004; 96: 673–682.

    CAS  PubMed  Google Scholar 

  50. Muller A, Zang C, Chumduri C, Dorken B, Daniel PT, Scholz CW . Concurrent inhibition of PI3K and mTORC1/mTORC2 overcomes resistance to rapamycin induced apoptosis by down-regulation of Mcl-1 in mantle cell lymphoma. Int J Cancer 2013; 133: 1813–1824.

    PubMed  Google Scholar 

  51. Agarwal B, Naresh KN . Bcl-2 family of proteins in indolent B-cell non-Hodgkin's lymphoma: Study of 116 cases. Am J Hematol 2002; 70: 278–282.

    CAS  PubMed  Google Scholar 

  52. Stolz C, Hess G, Hahnel PS, Grabellus F, Hoffarth S, Schmid KW et al. Targeting Bcl-2 family proteins modulates the sensitivity of B-cell lymphoma to rituximab-induced apoptosis. Blood 2008; 112: 3312–3321.

    CAS  PubMed  Google Scholar 

  53. Hussain SRA, Cheney CM, Johnson AJ, Lin TS, Grever MR, Caligiuri MA et al. Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: down-regulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin Cancer Res 2007; 13: 2144–2150.

    CAS  PubMed  Google Scholar 

  54. Rahmani M, Aust MM, Benson EC, Wallace L, Friedberg J, Grant S . PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res 2014; 20: 4849–4860.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kuramoto K, Sakai A, Shigemasa K, Takimoto Y, Asaoku H, Tsujimoto T et al. High expression of MCL1 gene related to vascular endothelial growth factor is associated with poor outcome in non‐Hodgkin's lymphoma. Br J Haematol 2002; 116: 158–161.

    CAS  PubMed  Google Scholar 

  56. Martinez-Paniagua MA, Baritaki S, Huerta-Yepez S, Ortiz-Navarrete VF, Gonzalez-Bonilla C, Bonavida B et al. Mcl-1 and YY1 inhibition and induction of DR5 by the BH3-mimetic Obatoclax (GX15-070) contribute in the sensitization of B-NHL cells to TRAIL apoptosis. Cell Cycle 2011; 10: 2792–2805.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jacquemin G, Granci V, Gallouet AS, Lalaoui N, Morle A, Iessi E et al. Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin's lymphoma B cells. Haematologica 2012; 97: 38–46.

    PubMed  PubMed Central  Google Scholar 

  58. Michels J, O'Neill JW, Dallman CL, Mouzakiti A, Habens F, Brimmell M et al. Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene 2004; 23: 4818–4827.

    CAS  PubMed  Google Scholar 

  59. Cencic R, Hall DR, Robert F, Du Y, Min J, Li L et al. Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F. Proc Natl Acad Sci USA 2011; 108: 1046–1051.

    CAS  PubMed  Google Scholar 

  60. Pileri SA, Piccaluga PP . New molecular insights into peripheral T cell lymphomas. J Clin Invest 2012; 122: 3448–3455.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rassidakis GZ, Jones D, Lai R, Ramalingam P, Sarris AH, McDonnell TJ et al. BCL-2 family proteins in peripheral T-cell lymphomas: correlation with tumour apoptosis and proliferation. J Pathol 2003; 200: 240–248.

    CAS  PubMed  Google Scholar 

  62. Zettl A, Rudiger T, Konrad MA, Chott A, Simonitsch-Klupp I, Sonnen R et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol 2004; 164: 1837–1848.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nelson M, Horsman DE, Weisenburger DD, Gascoyne RD, Dave BJ, Loberiza FR et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol 2008; 141: 461–469.

    CAS  PubMed  Google Scholar 

  64. Salaverria I, Bea S, Lopez-Guillermo A, Lespinet V, Pinyol M, Burkhardt B et al. Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol 2008; 140: 516–526.

    PubMed  Google Scholar 

  65. Rust R, Harms G, Blokzijl T, Boot M, Diepstra A, Kluiver J et al. High expression of Mcl-1 in ALK positive and negative anaplastic large cell lymphoma. J Clin Pathol 2005; 58: 520–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Merkel O, Hamacher F, Laimer D, Sifft E, Trajanoski Z, Scheideler M et al. Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK)+ and ALK- anaplastic large-cell lymphoma. Proc Natl Acad Sci USA 2010; 107: 16228–16233.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vega F, Medeiros LJ, Leventaki V, Atwell C, Cho-Vega JH, Tian L et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 2006; 66: 6589–6597.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Itoyama T, Chaganti RS, Yamada Y, Tsukasaki K, Atogami S, Nakamura H et al. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood 2001; 97: 3612–3620.

    CAS  PubMed  Google Scholar 

  69. Tsukasaki K, Krebs J, Nagai K, Tomonaga M, Koeffler HP, Bartram CR et al. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood 2001; 97: 3875–3881.

    CAS  PubMed  Google Scholar 

  70. Zhang C-L, Kamarashev J, Qin J-Z, Burg Gn, Dummer R, D bbeling U . Expression of apoptosis regulators in cutaneous T-cell lymphoma (CTCL) cells. J Pathol 2003; 200: 249–254.

    CAS  PubMed  Google Scholar 

  71. van Doorn R, van Kester MS, Dijkman R, Vermeer MH, Mulder AA, Szuhai K et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood 2009; 113: 127–136.

    CAS  PubMed  Google Scholar 

  72. Shin J, Monti S, Aires DJ, Duvic M, Golub T, Jones DA et al. Lesional gene expression profiling in cutaneous T-cell lymphoma reveals natural clusters associated with disease outcome. Blood 2007; 110: 3015–3027.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaplan HS . Influence of thymectomy, splenectomy, and gonadectomy on incidence of radiation-induced lymphoid tumors in strain C57 black mice. J Natl Cancer Inst 1950; 11: 83–90.

    CAS  PubMed  Google Scholar 

  74. Pechloff K, Holch J, Ferch U, Schweneker M, Brunner K, Kremer M et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J Exp Med 2010; 207: 1031–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Del Gaizo Moore V, Letai A . BH3 profiling–measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Lett 2013; 332: 202–205.

    CAS  PubMed  Google Scholar 

  76. Besbes S, Mirshahi M, Pocard M, Billard C . New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget 2015; 6: 12862–12871.

    PubMed  PubMed Central  Google Scholar 

  77. McCoy F, Hurwitz J, McTavish N, Paul I, Barnes C, O'Hagan B et al. Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK. Cell Death Dis 2010; 1: e108.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    CAS  PubMed  Google Scholar 

  79. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S et al. Programmed anuclear cell death delimits platelet life span. Cell 2007; 128: 1173–1186.

    CAS  PubMed  Google Scholar 

  80. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 2008; 68: 3421–3428.

    CAS  PubMed  Google Scholar 

  81. Phillips DC, Xiao Y, Lam LT, Litvinovich E, Roberts-Rapp L, Souers AJ et al. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J 2015; 5: e368.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yecies D, Carlson NE, Deng J, Letai A . Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 2010; 115: 3304–3313.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jilg S, Reidel V, Muller-Thomas C, Konig J, Schauwecker J, Hockendorf U et al. Blockade of BCL-2 proteins efficiently induces apoptosis in progenitor cells of high-risk myelodysplastic syndromes patients. Leukemia 2016; 30: 112–123.

    CAS  PubMed  Google Scholar 

  84. Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DCS et al. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc Natl Acad Sci USA 2007; 104: 6217–6222.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Petros AM, Swann SL, Song D, Swinger K, Park C, Zhang H et al. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg Med Chem Lett 2014; 24: 1484–1488.

    CAS  PubMed  Google Scholar 

  86. Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, Garcia-Barrantes PM et al. Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 2013; 56: 15–30.

    CAS  PubMed  Google Scholar 

  87. Doi K, Li R, Sung SS, Wu H, Liu Y, Manieri W et al. Discovery of marinopyrrole A (maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasomal degradation. J Biol Chem 2012; 287: 10224–10235.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Leverson JD, Zhang H, Chen J, Tahir SK, Phillips DC, Xue J et al. Potent and selective small-molecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263 (navitoclax). Cell Death Dis 2015; 6: e1590.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gloaguen C, Voisin-Chiret AS, Sopkova-de Oliveira Santos J, Fogha J, Gautier F, De Giorgi M et al. First evidence that oligopyridines, alpha-helix foldamers, inhibit Mcl-1 and sensitize ovarian carcinoma cells to Bcl-xL-targeting strategies. J Med Chem 2015; 58: 1644–1668.

    CAS  PubMed  Google Scholar 

  90. Bruncko M, Wang L, Sheppard GS, Phillips DC, Tahir SK, Xue J et al. Structure-guided design of a series of MCL-1 inhibitors with high affinity and selectivity. J Med Chem 2015; 58: 2180–2194.

    CAS  PubMed  Google Scholar 

  91. Thomas RL, Gustafsson AB . MCL1 is critical for mitochondrial function and autophagy in the heart. Autophagy 2013; 9: 1902–1903.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vick B, Weber A, Urbanik T, Maass T, Teufel A, Krammer PH et al. Knockout of myeloid cell leukemia-1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology 2009; 49: 627–636.

    CAS  PubMed  Google Scholar 

  93. Dzhagalov I St, John A, He YW . The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood 2007; 109: 1620–1626.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lilla JN, Chen CC, Mukai K, BenBarak MJ, Franco CB, Kalesnikoff J et al. Reduced mast cell and basophil numbers and function in Cpa3-Cre; Mcl-1fl/fl mice. Blood 2011; 118: 6930–6938.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Prueksaritanont T, DeLuna P, Gorham LM, Ma B, Cohn D, Pang J et al. In vitro and in vivo evaluations of intestinal barriers for the zwitterion L-767,679 and its carboxyl ester prodrug L-775,318. Roles of efflux and metabolism. Drug Metab Dispos 1998; 26: 520–527.

    CAS  PubMed  Google Scholar 

  96. Oppermann S, Ylanko J, Shi Y, Hariharan S, Oakes CC, Brauer PM et al. Identification of kinase inhibitors that overcome venetoclax resistance in activated CLL cells by high-content screening. Blood 2016; e-pub ahead of print 13 June 2016 doi:10.1182/blood-2015-12-687814.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS et al. Therapeutic delivery of MicroRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2013; 2: e84.

    PubMed  PubMed Central  Google Scholar 

  98. Peterson LF, Sun H, Liu Y, Potu H, Kandarpa M, Ermann M et al. Targeting deubiquitinase activity with a novel small-molecule inhibitor as therapy for B-cell malignancies. Blood 2015; 125: 3588–3597.

    CAS  PubMed  Google Scholar 

  99. Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat Chem Biol 2013; 9: 390–397.

    CAS  PubMed  Google Scholar 

  100. Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD . A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome? Genome Res 2012; 22: 993–1005.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a Max Eder-Program grant from the Deutsche Krebshilfe (program #111738), a Human Frontiers Science Program grant (program #RGY0073/2012), a German Jose Carreras Leukemia Foundation grant (DJCLS R 12/22), a research grant from the Deutsche Forschungsgemeinschaft (DFG, FOR2036) and an Else Kröner-Fresenius-Stiftung grant 2014_A185 (to PJJ and MY) and a Swiss National Science Foundation (SNF), grant 310030E150805, part of the D-A-CH initiative from the SNF and the DFG, FOR-2036 (to TK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Kaufmann or P J Jost.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Marrero, Y., Spinner, S., Kaufmann, T. et al. Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Leukemia 30, 2152–2159 (2016). https://doi.org/10.1038/leu.2016.213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.213

This article is cited by

Search

Quick links