Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

A novel slug-containing negative-feedback loop regulates SCF/c-Kit-mediated hematopoietic stem cell self-renewal

Abstract

The stem cell factor (SCF)/c-Kit pathway has crucial roles in controlling hematopoietic stem cell (HSC) renewal. However, little is known about the intracellular regulation of the SCF/c-Kit pathway in HSCs. We report here that Slug, a zinc-finger transcription repressor, functions as a direct transcriptional repressor of c-Kit in HSCs. Conversely, SCF/c-Kit signaling positively regulates Slug through downstream c-Myc and FoxM1 transcription factors. Intriguingly, c-Kit expression is induced by SCF/c-Kit signaling in Slug-deficient HSCs. The balance between Slug and c-Kit is critical for maintaining HSC repopulating potential in vivo. Together, our studies demonstrate that Slug functions in a novel negative-feedback regulatory loop in the SCF/c-Kit signaling pathway in HSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Riether C, Schurch CM, Ochsenbein AF . Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ 2015; 22: 187–198.

    Article  CAS  Google Scholar 

  2. Sun Y, Shao L, Bai H, Wang ZZ, Wu WS . Slug deficiency enhances self-renewal of hematopoietic stem cells during hematopoietic regeneration. Blood 2010; 115: 1709–1717.

    Article  CAS  Google Scholar 

  3. Oguro H, Ding L, Morrison SJ . SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 2013; 13: 102–116.

    Article  CAS  Google Scholar 

  4. Sharpless NE, DePinho RA . How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 2007; 8: 703–713.

    Article  CAS  Google Scholar 

  5. Yang L, Bryder D, Adolfsson J, Nygren J, Mansson R, Sigvardsson M et al. Identification of Lin(-)Sca1(+)kit(+)CD34(+)Flt3- short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 2005; 105: 2717–2723.

    Article  CAS  Google Scholar 

  6. Lacombe J, Krosl G, Tremblay M, Gerby B, Martin R, Aplan PD et al. Genetic interaction between Kit and Scl. Blood 2013; 122: 1150–1161.

    Article  CAS  Google Scholar 

  7. Miller CL, Rebel VI, Helgason CD, Lansdorp PM, Eaves CJ . Impaired steel factor responsiveness differentially affects the detection and long-term maintenance of fetal liver hematopoietic stem cells in vivo. Blood 1997; 89: 1214–1223.

    CAS  PubMed  Google Scholar 

  8. Kimura Y, Ding B, Imai N, Nolan DJ, Butler JM, Rafii S . c-Kit-mediated functional positioning of stem cells to their niches is essential for maintenance and regeneration of adult hematopoiesis. PLoS One 2011; 6: e26918.

    Article  CAS  Google Scholar 

  9. Shin JY, Hu W, Naramura M, Park CY . High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med 2014; 211: 217–231.

    Article  CAS  Google Scholar 

  10. Edling CE, Hallberg B . c-Kit–a hematopoietic cell essential receptor tyrosine kinase. Int J Biochem Cell Biol 2007; 39: 1995–1998.

    Article  CAS  Google Scholar 

  11. Munugalavadla V, Dore LC, Tan BL, Hong L, Vishnu M, Weiss MJ et al. Repression of c-kit and its downstream substrates by GATA-1 inhibits cell proliferation during erythroid maturation. Mol Cell Biol 2005; 25: 6747–6759.

    Article  CAS  Google Scholar 

  12. Xie Y, Li Y, Kong Y . OPN induces FoxM1 expression and localization through ERK 1/2, AKT, and p38 signaling pathway in HEC-1 A cells. Int J Mol Sci 2014; 15: 23345–23358.

    Article  Google Scholar 

  13. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 18: 2747–2763.

    Article  CAS  Google Scholar 

  14. Wang Z, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH . Forkhead box M1 transcription factor: a novel target for cancer therapy. Cancer Treat Rev 2010; 36: 151–156.

    Article  CAS  Google Scholar 

  15. Inoue A, Seidel MG, Wu W, Kamizono S, Ferrando AA, Bronson RT et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2002; 2: 279–288.

    Article  Google Scholar 

  16. Liu X, Sun H, Qi J, Wang L, He S, Liu J et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol 2013; 15: 829–838.

    Article  CAS  Google Scholar 

  17. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 2009; 11: 694–704.

    Article  CAS  Google Scholar 

  18. Shih JY, Yang PC . The EMT regulator slug and lung carcinogenesis. Carcinogenesis 2011; 32: 1299–1304.

    Article  CAS  Google Scholar 

  19. Phillips S, Prat A, Sedic M, Proia T, Wronski A, Mazumdar S et al. Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Rep 2014; 2: 633–647.

    Article  CAS  Google Scholar 

  20. Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, Orfao A, Flores T et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 2002; 100: 1274–1286.

    CAS  PubMed  Google Scholar 

  21. Catalano A, Rodilossi S, Rippo MR, Caprari P, Procopio A . Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells. J Biol Chem 2004; 279: 46706–46714.

    Article  CAS  Google Scholar 

  22. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M . Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 2001; 230: 230–242.

    Article  CAS  Google Scholar 

  23. Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K et al. SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2 A-HLF oncoprotein. Mol Cell 1999; 4: 343–352.

    Article  CAS  Google Scholar 

  24. Wang X, Kiyokawa H, Dennewitz MB, Costa RH . The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci USA 2002; 99: 16881–16886.

    Article  CAS  Google Scholar 

  25. Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 2006; 12: 240–245.

    Article  Google Scholar 

  26. Szilvassy SJ, Weller KP, Chen B, Juttner CA, Tsukamoto A, Hoffman R . Partially differentiated ex vivo expanded cells accelerate hematologic recovery in myeloablated mice transplanted with highly enriched long-term repopulating stem cells. Blood 1996; 88: 3642–3653.

    CAS  PubMed  Google Scholar 

  27. Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2004; 2: e301.

    Article  Google Scholar 

  28. Randall TD, Weissman IL . Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 1997; 89: 3596–3606.

    CAS  PubMed  Google Scholar 

  29. Hemavathy K, Ashraf SI, Ip YT . Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 2000; 257: 1–12.

    Article  CAS  Google Scholar 

  30. Parra RG, Rohr CO, Koile D, Perez-Castro C, Yankilevich P . INSECT 2.0: a web-server for genome-wide cis-regulatory modules prediction. Bioinformatics 2015; 32: 1229–1231.

    Article  Google Scholar 

  31. Aigner S, Ruppert M, Hubbe M, Sammar M, Sthoeger Z, Butcher EC et al. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin. Int Immunol 1995; 7: 1557–1565.

    Article  CAS  Google Scholar 

  32. Dole VS, Bergmeier W, Mitchell HA, Eichenberger SC, Wagner DD . Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: role of P-selectin. Blood 2005; 106: 2334–2339.

    Article  CAS  Google Scholar 

  33. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD . Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 1993; 74: 541–554.

    Article  CAS  Google Scholar 

  34. Matsuoka RL, Sun LO, Katayama K, Yoshida Y, Kolodkin AL . Sema6B, Sema6C, and Sema6D expression and function during mammalian retinal development. PloS One 2013; 8: e63207.

    Article  CAS  Google Scholar 

  35. Tawarayama H, Yoshida Y, Suto F, Mitchell KJ, Fujisawa H . Roles of semaphorin-6B and plexin-A2 in lamina-restricted projection of hippocampal mossy fibers. J Neurosci 2010; 30: 7049–7060.

    Article  CAS  Google Scholar 

  36. Kigel B, Rabinowicz N, Varshavsky A, Kessler O, Neufeld G . Plexin-A4 promotes tumor progression and tumor angiogenesis by enhancement of VEGF and bFGF signaling. Blood 2011; 118: 4285–4296.

    Article  CAS  Google Scholar 

  37. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat Biotechnol 2004; 22: 589–594.

    Article  CAS  Google Scholar 

  38. Zhang Z, Gao Y, Gordon A, Wang ZZ, Qian Z, Wu WS . Efficient generation of fully reprogrammed human iPS cells via polycistronic retroviral vector and a new cocktail of chemical compounds. PLoS One 2011; 6: e26592.

    Article  CAS  Google Scholar 

  39. Yang C, Chen H, Tan G, Gao W, Cheng L, Jiang X et al. FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett 2013; 340: 104–112.

    Article  CAS  Google Scholar 

  40. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    Article  CAS  Google Scholar 

  41. Satoh Y, Matsumura I, Tanaka H, Ezoe S, Sugahara H, Mizuki M et al. Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem 2004; 279: 24986–24993.

    Article  CAS  Google Scholar 

  42. Baena E, Ortiz M, Martinez AC, de Alboran IM . c-Myc is essential for hematopoietic stem cell differentiation and regulates Lin(-)Sca-1(+)c-Kit(-) cell generation through p21. Exp Hematol 2007; 35: 1333–1343.

    Article  CAS  Google Scholar 

  43. Rodrigues CO, Nerlick ST, White EL, Cleveland JL, King ML . A Myc-Slug (Snail2)/Twist regulatory circuit directs vascular development. Development 2008; 135: 1903–1911.

    Article  CAS  Google Scholar 

  44. Wierstra I, Alves J . FOXM1c transactivates the human c-myc promoter directly via the two TATA boxes P1 and P2. FEBS J 2006; 273: 4645–4667.

    Article  CAS  Google Scholar 

  45. Wierstra I, Alves J . FOXM1c and Sp1 transactivate the P1 and P2 promoters of human c-myc synergistically. Biochem Biophys Res Commun 2007; 352: 61–68.

    Article  CAS  Google Scholar 

  46. Blanco-Bose WE, Murphy MJ, Ehninger A, Offner S, Dubey C, Huang W et al. C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia. Hepatology 2008; 48: 1302–1311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants DK090478 and AG040182. We thank the Flow Cytometry Core and the Biological Resources Laboratory at University of Illinois at Chicago.

Author contributions

ZZ and W-SW designed and interpreted all experiments. ZZ planed and conducted most of the experiments. YZ conducted microarray analysis. PZ, YS, YH, ZQ and DX contributed to animal studies. ZZ, JM and W-SW wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-S Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhu, P., Zhou, Y. et al. A novel slug-containing negative-feedback loop regulates SCF/c-Kit-mediated hematopoietic stem cell self-renewal. Leukemia 31, 403–413 (2017). https://doi.org/10.1038/leu.2016.201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.201

This article is cited by

Search

Quick links