Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia

Abstract

The lymph node (LN) is the site of chronic lymphocytic leukemia (CLL) cell activation and proliferation. Aberrant microRNA (miRNA) expression has been shown to have a role in CLL pathogenesis; however, a comparison of miRNA expression between CLL cells in the LN and the peripheral blood (PB) has previously not been reported. On the basis of the analysis of 17 paired LN and PB samples from CLL patients, we identify a panel of miRNAs that are increased in LN CLL cells correlating with an activation phenotype. When evaluated in CLL cells from 38 patients pre and post treatment with ibrutinib, a subset of these miRNAs (miR-22, miR-34a, miR-146b and miR-181b) was significantly decreased in response to ibrutinib. A concomitant increase in putative miRNA target transcripts (ARID1B, ARID2, ATM, CYLD, FOXP1, HDAC1, IBTK, PTEN and SMAD4) was also observed. Functional studies confirmed targets of ibrutinib-responsive miRNAs to include messenger RNA transcripts of multiple tumor suppressors. Knockdown of endogenous miR-34a and miR146b resulted in increased transcription of tumor suppressors and inhibition of cell proliferation. These findings demonstrate that ibrutinib downregulates the expression of a subset of miRNAs related to B-cell activation leading to increased expression of miRNA targets including tumor suppressors and a reduction in cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES . The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 2011; 117: 5019–5032.

    Article  CAS  Google Scholar 

  2. Herishanu Y, Katz BZ, Lipsky A, Wiestner A . Biology of chronic lymphocytic leukemia in different microenvironments: clinical and therapeutic implications. Hematol Oncol Clin North Am 2013; 27: 173–206.

    Article  Google Scholar 

  3. Zhang S, Kipps TJ . The pathogenesis of chronic lymphocytic leukemia. Annu Rev Pathol 2014; 9: 103–118.

    Article  Google Scholar 

  4. Fegan C, Pepper C . Apoptosis deregulation in CLL. Adv Exp Med Biol 2013; 792: 151–171.

    Article  CAS  Google Scholar 

  5. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  Google Scholar 

  6. Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med 2015; 373: 2425–2437.

    Article  CAS  Google Scholar 

  7. Wiestner A . The role of B-cell receptor inhibitors in the treatment of patients with chronic lymphocytic leukemia. Haematologica 2015; 100: 1495–1507.

    Article  CAS  Google Scholar 

  8. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  Google Scholar 

  9. Herman SE, Mustafa RZ, Gyamfi JA, Pittaluga S, Chang S, Chang B et al. Ibrutinib inhibits BCR and NF-kB signaling and reduces tumor proliferation in tissue-resident cells of patients with CLL. Blood 2014; 123: 3286–3295.

    Article  CAS  Google Scholar 

  10. Farooqui MZH, Valdez J, Martyr S, Aue G, Saba N, Niemann CU et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with Tp53 aberrations: a phase 2, single-arm trial. Lancet Oncol 2015; 16: 169–176.

    Article  CAS  Google Scholar 

  11. de Claro RA, McGinn KM, Verdun N, Lee SL, Chiu HJ, Saber H et al. FDA approval: ibrutinib for patients with previously treated mantle cell lymphoma and previously treated chronic lymphocytic leukemia. Clin Cancer Res 2015; 21: 3586–3590.

    Article  CAS  Google Scholar 

  12. Cheng S, Ma J, Guo A, Lu P, Leonard JP, Coleman M et al. BTK inhibition targets in vivo CLL proliferation through its effects on B-cell receptor signaling activity. Leukemia 2014; 28: 649–657.

    Article  CAS  Google Scholar 

  13. Herman SE, Niemann CU, Farooqui M, Jones J, Mustafa RZ, Lipsky A et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analyses from a phase II study. Leukemia 2014; 28: 2188–2196.

    Article  CAS  Google Scholar 

  14. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  15. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  Google Scholar 

  16. Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 2010; 116: 945–952.

    Article  CAS  Google Scholar 

  17. Dufour A, Palermo G, Zellmeier E, Mellert G, Duchateau-Nguyen G, Schneider S et al. Inactivation of Tp53 correlates with disease progression and low miR-34a expression in previously treated chronic lymphocytic leukemia patients. Blood 2013; 121: 3650–3657.

    Article  CAS  Google Scholar 

  18. Mraz M, Chen L, Rassenti LZ, Ghia EM, Li H, Jepsen K et al. miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood 2014; 124: 84–95.

    Article  CAS  Google Scholar 

  19. Mraz M, Malinova K, Kotaskova J, Pavlova S, Tichy B, Malcikova J et al. miR-34a, miR-29c and miR-17-5p are downregulated in CLL Patients with TP53 abnormalities. Leukemia 2009; 23: 1159–1163.

    Article  CAS  Google Scholar 

  20. Yeh YY, Ozer HG, Lehman AM, Maddocks K, Yu L, Johnson AJ et al. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling. Blood 2015; 125: 3297–3305.

    Article  CAS  Google Scholar 

  21. Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH et al. miR-181a/B significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 2012; 33: 1294–1301.

    Article  CAS  Google Scholar 

  22. Mraz M, Pospisilova S, Malinova K, Slapak I, Mayer J . MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma 2009; 50: 506–509.

    Article  CAS  Google Scholar 

  23. Li S, Moffett HF, Lu J, Werner L, Zhang H, Ritz J et al. MicroRNA expression profiling identifies activated B cell status in chronic lymphocytic leukemia cells. PLoS One 2011; 6: e16956.

    Article  CAS  Google Scholar 

  24. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  Google Scholar 

  25. Degheidy HA, Gadalla SM, Farooqui MZ, Abbasi F, Arthur DC, Bauer SR et al. Bcl-2 level as a biomarker for 13q14 deletion in CLL. Cytometry B Clin Cytom 2013; 84: 237–247.

    Article  Google Scholar 

  26. Negrini M, Cutrona G, Bassi C, Fabris S, Zagatti B, Colombo M et al. microRNAome expression in chronic lymphocytic leukemia: comparison with normal B-cell subsets and correlations with prognostic and clinical parameters. Clin Cancer Res 2014; 20: 4141–4153.

    Article  CAS  Google Scholar 

  27. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  Google Scholar 

  28. Mraz M, Kipps TJ . MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54: 1836–1839.

    Article  CAS  Google Scholar 

  29. Pede V, Rombout A, Vermeire J, Naessens E, Mestdagh P, Robberecht N et al. CLL cells respond to B-cell receptor stimulation with a microRNA/mRNA signature associated with MYC activation and cell cycle progression. PLoS One 2013; 8: e60275.

    Article  CAS  Google Scholar 

  30. Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS et al. MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica 2012; 97: 586–594.

    Article  CAS  Google Scholar 

  31. Luo X, Zhang J, Wang H, Du Y, Yang L, Zheng F et al. PolyA RT-PCR-based quantification of microRNA by using universal TaqMan probe. Biotechnol Lett 2012; 34: 627–633.

    Article  CAS  Google Scholar 

  32. Wang W, Corrigan-Cummins M, Barber EA, Saleh LM, Zingone A, Ghafoor A et al. Aberrant levels of miRNAs in bone marrow microenvironment and peripheral blood of myeloma patients and disease progression. J Mol Diagn 2015; 17: 669–678.

    Article  CAS  Google Scholar 

  33. Kubiczkova L, Kryukov F, Slaby O, Dementyeva E, Jarkovsky J, Nekvindova J et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica 2014; 99: 511–518.

    Article  CAS  Google Scholar 

  34. Daibata M, Kubonishi I, Eguchi T, Yano S, Ohtsuki Y, Miyoshi I . The establishment of Epstein-Barr virus nuclear antigen-positive (SP-50B) and Epstein-Barr virus nuclear antigen-negative (SP-53) cell lines with t(11;14)(q13;q32) chromosome abnormality from an intermediate lymphocytic lymphoma. Cancer 1989; 64: 1248–1253.

    Article  CAS  Google Scholar 

  35. Schneider CA, Rasband WS, Eliceiri KW . NIH image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    Article  CAS  Google Scholar 

  36. Foa R, Del Giudice I, Guarini A, Rossi D, Gaidano G . Clinical Implications of the Molecular Genetics of Chronic Lymphocytic Leukemia. Haematologica 2013; 98: 675–685.

    Article  CAS  Google Scholar 

  37. Wang Y, Zhang LL, Champlin RE, Wang ML . Targeting Bruton's tyrosine kinase with ibrutinib in B-cell malignancies. Clin Pharmacol Ther 2015; 97: 455–468.

    Article  CAS  Google Scholar 

  38. Elter T, Hallek M, Engert A . Fludarabine in chronic lymphocytic leukaemia. Expert Opin Pharmacother 2006; 7: 1641–1651.

    Article  CAS  Google Scholar 

  39. Genovese G, Ergun A, Shukla SA, Campos B, Hanna J, Ghosh P et al. microRNA regulatory network inference identifies miR-34a as a novel regulator of TGF-β signaling in glioblastoma. Cancer Discov 2012; 2: 736–749.

    Article  CAS  Google Scholar 

  40. Lal A, Thomas MP, Altschuler G, Navarro F, O'Day E, Li XL et al. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 2011; 7: e1002363.

    Article  CAS  Google Scholar 

  41. Qiao P, Li G, Bi W, Yang L, Yao L, Wu D . microRNA-34a inhibits epithelial mesenchymal transition in human cholangiocarcinoma by targeting Smad4 through transforming growth factor-beta/Smad pathway. BMC Cancer 2015; 15: 469.

    Article  Google Scholar 

  42. Geraldo MV, Yamashita AS, Kimura ET . MicroRNA miR-146b-5p regulates signal transduction of TGF-β by repressing SMAD4 in thyroid cancer. Oncogene 2012; 31: 1910–1922.

    Article  CAS  Google Scholar 

  43. Wu MY, Fu J, Xiao X, Wu J, Wu RC . MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. Cancer Lett 2014; 354: 311–319.

    Article  CAS  Google Scholar 

  44. Zhao J, Lammers P, Torrance CJ, Bader AG . TP53-independent function of miR-34a via HDAC1 and p21(CIP1/WAF1.). Mol Ther 2013; 21: 1678–1686.

    Article  CAS  Google Scholar 

  45. Brizova H, Kalinova M, Krskova L, Mrhalova M, Kodet R . A novel quantitative PCR of proliferation markers (Ki-67, topoisomerase Ilalpha, and TPX2): an immunohistochemical correlation, testing, and optimizing for mantle cell lymphoma. Virchows Arch 2010; 456: 671–679.

    Article  CAS  Google Scholar 

  46. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296.

    Article  CAS  Google Scholar 

  47. Palacios F, Prieto D, Abreu C, Ruiz S, Morande P, Fernandez-Calero T et al. Dissecting chronic lymphocytic leukemia microenvironment signals in patients with unmutated disease: microRNA-22 regulates phosphatase and tensin homolog/AKT/FOXO1 pathway in proliferative leukemic cells. Leuk Lymphoma 2015; 56: 1560–1565.

    Article  CAS  Google Scholar 

  48. Palacios F, Abreu C, Prieto D, Morande P, Ruiz S, Fernandez-Calero T et al. Activation of the PI3k/AKT pathway by microRNA-22 results in CLL B-cell proliferation. Leukemia 2015; 29: 115–125.

    Article  CAS  Google Scholar 

  49. Andrade TA, Evangelista AF, Campos AH, Poles WA, Borges NM, Camillo CM et al. A microRNA signature profile in EBV+ diffuse large B-cell lymphoma of the elderly. Oncotarget 2014; 5: 11813–11826.

    Article  Google Scholar 

  50. Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009; 113: 3801–3808.

    Article  CAS  Google Scholar 

  51. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 2011; 305: 59–67.

    Article  CAS  Google Scholar 

  52. Ruiz-Lafuente N, Alcaraz-Garcia MJ, Sebastian-Ruiz S, Garcia-Serna AM, Gomez-Espuch J, Moraleda JM et al. IL-4 up-regulates miR-21 and the miRNAs hosted in the CLCN5 gene in chronic lymphocytic leukemia. PLoS One 2015; 10: e0124936.

    Article  Google Scholar 

  53. Asslaber D, Pinon JD, Seyfried I, Desch P, Stocher M, Tinhofer I et al. microRNA-34a expression correlates with MDM2 SNP309 polymorphism and treatment-free survival in chronic lymphocytic leukemia. Blood 2010; 115: 4191–4197.

    Article  CAS  Google Scholar 

  54. Sotillo E, Laver T, Mellert H, Schelter JM, Cleary MA, McMahon S et al. Myc overexpression brings out unexpected antiapoptotic effects of miR-34a. Oncogene 2011; 30: 2587–2594.

    Article  CAS  Google Scholar 

  55. Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM, Cluse L et al. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood 2013; 121: 3459–3468.

    Article  CAS  Google Scholar 

  56. Huang Y, Qi Y, Du JQ, Zhang DF . MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opin Ther Targets 2014; 18: 1355–1365.

    CAS  PubMed  Google Scholar 

  57. Jones S, Stransky N, McCord CL, Cerami E, Lagowski J, Kelly D et al. Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes. Nat Commun 2014; 5: 5006.

    Article  CAS  Google Scholar 

  58. Shao F, Guo T, Chua PJ, Tang L, Thike AA, Tan PH et al. Clinicopathological significance of ARID1B in breast invasive ductal carcinoma. Histopathology 2015; 67: 709–718.

    Article  Google Scholar 

  59. Shain AH, Pollack JR . The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One 2013; 8: e55119.

    Article  Google Scholar 

  60. Wu W, Zhu H, Fu Y, Shen W, Xu J, Miao K et al. Clinical significance of down-regulated cylindromatosis gene in chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55: 588–594.

    Article  CAS  Google Scholar 

  61. Liu P, Xu B, Shen W, Zhu H, Wu W, Fu Y et al. Dysregulation of TNFα-induced necroptotic signaling in chronic lymphocytic leukemia: suppression of CYLD gene by LEF1. Leukemia 2012; 26: 1293–1300.

    Article  CAS  Google Scholar 

  62. Strobel P, Zettl A, Ren Z, Starostik P, Riedmiller H, Storkel S et al. Spiradenocylindroma of the kidney: clinical and genetic findings suggesting a role of somatic mutation of the CYLD1 gene in the oncogenesis of an unusual renal neoplasm. Am J Surg Pathol 2002; 26: 119–124.

    Article  Google Scholar 

  63. Spatuzza C, Schiavone M, Di Salle E, Janda E, Sardiello M, Fiume G et al. Physical and functional characterization of the genetic locus of IBtk, an inhibitor of Bruton's tyrosine kinase: evidence for three protein isoforms of IBtk. Nucleic Acids Res 2008; 36: 4402–4416.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Division of Intramural Research, NIH Clinical Center, and National Heart, Lung and Blood Institute. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services. We thank Dr Masanori Daibata (Kochi University Medical School, Kochi, Japan) for use of the SP53 cell line.

Author contributions

LMS, WW, SEMH, NKA, ZZ, OE, HAA, AW and KRC designed the study. LMS, WW, SEMH, NSS, EB, MC-C and VA performed the experiments. LMS, WW, VA and KRC analyzed the data and wrote the manuscript. SMS and LMS performed the statistical analyses. MF and CS provided clinical care and patient samples. AW, SEMH, ZZ and HAA assisted in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K R Calvo.

Ethics declarations

Competing interests

AW has received research funding from Pharmacyclics. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, L., Wang, W., Herman, S. et al. Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia. Leukemia 31, 340–349 (2017). https://doi.org/10.1038/leu.2016.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.181

This article is cited by

Search

Quick links