Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Stem Cell Leukemia: how a TALented actor can go awry on the hematopoietic stage

Abstract

TAL1/SCL/TCL5 is a critical transcription factor for hematopoietic stem cell maintenance and regulation of early hematopoiesis. However, aberrant expression of TAL1 in committed T-cell precursors is also directly implicated in the development of T-cell leukemia. Roughly 25 years ago TAL1 was identified in early hematopoietic cells and involved in leukemia. Here, we review the wealth of knowledge gained since then on its physiological roles and mechanisms by which TAL1 ectopic expression contributes to leukemogenesis. We emphasize recent findings that shed light into the intricacies of TAL1 (epi)genetic regulation and the transcription network orchestrated by this major T-cell oncogene. Importantly, an exciting time is coming when data using the mechanistic knowledge accumulated on TAL1 may be used to develop novel anti-leukemia targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN et al. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 1989; 58: 537–544.

    CAS  PubMed  Google Scholar 

  2. Jones S . An overview of the basic helix-loop-helix proteins. Genome Biol 2004; 5: 226.

    PubMed  PubMed Central  Google Scholar 

  3. Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I et al. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J 1996; 15: 1021–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mellentin JD, Smith SD, Cleary ML . lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif. Cell 1989; 58: 77–83.

    CAS  PubMed  Google Scholar 

  5. Curtis DJ, Salmon JM, Pimanda JE . Concise review: blood relatives: formation and regulation of hematopoietic stem cells by the basic helix-loop-helix transcription factors stem cell leukemia and lymphoblastic leukemia-derived sequence 1. Stem Cells 2012; 30: 1053–1058.

    CAS  PubMed  Google Scholar 

  6. Pike-Overzet K, de Ridder D, Weerkamp F, Baert MR, Verstegen MM, Brugman MH et al. Ectopic retroviral expression of LMO2, but not IL2Rgamma, blocks human T-cell development from CD34+ cells: implications for leukemogenesis in gene therapy. Leukemia 2007; 21: 754–763.

    CAS  PubMed  Google Scholar 

  7. Zhang Y, Payne KJ, Zhu Y, Price MA, Parrish YK, Zielinska E et al. SCL expression at critical points in human hematopoietic lineage commitment. Stem Cells 2005; 23: 852–860.

    CAS  PubMed  Google Scholar 

  8. Brunet de la Grange P, Armstrong F, Duval V, Rouyez MC, Goardon N, Romeo PH et al. Low SCL/TAL1 expression reveals its major role in adult hematopoietic myeloid progenitors and stem cells. Blood 2006; 108: 2998–3004.

    CAS  PubMed  Google Scholar 

  9. Capron C, Lecluse Y, Kaushik AL, Foudi A, Lacout C, Sekkai D et al. The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 2006; 107: 4678–4686.

    CAS  PubMed  Google Scholar 

  10. Lacombe J, Herblot S, Rojas-Sutterlin S, Haman A, Barakat S, Iscove NN et al. Scl regulates the quiescence and the long-term competence of hematopoietic stem cells. Blood 2010; 115: 792–803.

    CAS  PubMed  Google Scholar 

  11. Curtis DJ, Hall MA, Van Stekelenburg LJ, Robb L, Jane SM, Begley CG . SCL is required for normal function of short-term repopulating hematopoietic stem cells. Blood 2004; 103: 3342–3348.

    CAS  PubMed  Google Scholar 

  12. Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA et al. Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 2004; 103: 1909–1911.

    CAS  PubMed  Google Scholar 

  13. Ravet E, Reynaud D, Titeux M, Izac B, Fichelson S, Roméo P-H et al. Characterization of DNA-binding-dependent and -independent functions of SCL/TAL1 during human erythropoiesis. Blood 2004; 103: 3326–3335.

    CAS  PubMed  Google Scholar 

  14. Reynaud D, Ravet E, Titeux M, Mazurier F, Renia L, Dubart-Kupperschmitt A et al. SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment. Blood 2005; 106: 2318–2328.

    CAS  PubMed  Google Scholar 

  15. Anjos-Afonso F, Currie E, Palmer HG, Foster KE, Taussig DC, Bonnet D . CD34(-) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 2013; 13: 161–174.

    CAS  PubMed  Google Scholar 

  16. Aplan PD, Nakahara K, Orkin SH, Kirsch IR . The SCL gene product: a positive regulator of erythroid differentiation. EMBO J 1992; 11: 4073–4081.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lahlil R, Lecuyer E, Herblot S, Hoang T . SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 2004; 24: 1439–1452.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ . Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 2003; 23: 7585–7599.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lausen J, Pless O, Leonard F, Kuvardina ON, Koch B, Leutz A . Targets of the Tal1 transcription factor in erythrocytes: E2 ubiquitin conjugase regulation by Tal1. J Biol Chem 2010; 285: 5338–5346.

    CAS  PubMed  Google Scholar 

  20. Yun WJ, Kim YW, Kang Y, Lee J, Dean A, Kim A . The hematopoietic regulator TAL1 is required for chromatin looping between the beta-globin LCR and human gamma-globin genes to activate transcription. Nucleic Acids Res 2014; 42: 4283–4293.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Aplan PD, Begley CG, Bertness V, Nussmeier M, Ezquerra A, Coligan J et al. The SCL gene is formed from a transcriptionally complex locus. Mol Cell Biol 1990; 10: 6426–6435.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bockamp EO, McLaughlin F, Murrell AM, Gottgens B, Robb L, Begley CG et al. Lineage-restricted regulation of the murine SCL/TAL-1 promoter. Blood 1995; 86: 1502–1514.

    CAS  PubMed  Google Scholar 

  23. Bernard O, Azogui O, Lecointe N, Mugneret F, Berger R, Larsen CJ et al. A third tal-1 promoter is specifically used in human T cell leukemias. J Exp Med 1992; 176: 919–925.

    CAS  PubMed  Google Scholar 

  24. Sanchez M, Gottgens B, Sinclair AM, Stanley M, Begley CG, Hunter S et al. An SCL 3' enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Development 1999; 126: 3891–3904.

    CAS  PubMed  Google Scholar 

  25. Gottgens B, Broccardo C, Sanchez MJ, Deveaux S, Murphy G, Gothert JR et al. The scl +18/19 stem cell enhancer is not required for hematopoiesis: identification of a 5' bifunctional hematopoietic-endothelial enhancer bound by Fli-1 and Elf-1. Mol Cell Biol 2004; 24: 1870–1883.

    PubMed  PubMed Central  Google Scholar 

  26. Ogilvy S, Ferreira R, Piltz SG, Bowen JM, Gottgens B, Green AR . The SCL +40 enhancer targets the midbrain together with primitive and definitive hematopoiesis and is regulated by SCL and GATA proteins. Mol Cell Biol 2007; 27: 7206–7219.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhami P, Bruce AW, Jim JH, Dillon SC, Hall A, Cooper JL et al. Genomic approaches uncover increasing complexities in the regulatory landscape at the human SCL (TAL1) locus. PLoS One 2010; 5: e9059.

    PubMed  PubMed Central  Google Scholar 

  28. Courtes C, Lecointe N, Le Cam L, Baudoin F, Sardet C, Mathieu-Mahul D . Erythroid-specific inhibition of the tal-1 intragenic promoter is due to binding of a repressor to a novel silencer. J Biol Chem 2000; 275: 949–958.

    CAS  PubMed  Google Scholar 

  29. Le Clech M, Chalhoub E, Dohet C, Roure V, Fichelson S, Moreau-Gachelin F et al. PU.1/Spi-1 binds to the human TAL-1 silencer to mediate its activity. J Mol Biol 2006; 355: 9–19.

    CAS  PubMed  Google Scholar 

  30. Zhou Y, Kurukuti S, Saffrey P, Vukovic M, Michie AM, Strogantsev R et al. Chromatin looping defines expression of TAL1, its flanking genes, and regulation in T-ALL. Blood 2013; 122: 4199–4209.

    CAS  PubMed  Google Scholar 

  31. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 2016; 351: 1454–1458.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    CAS  PubMed  Google Scholar 

  33. Homminga I, Pieters R, Langerak Anton W, de Rooi Johan J, Stubbs A, Verstegen M et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011; 19: 484–497.

    CAS  PubMed  Google Scholar 

  34. Bash RO, Hall S, Timmons CF, Crist WM, Amylon M, Smith RG et al. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. Blood 1995; 86: 666–676.

    CAS  PubMed  Google Scholar 

  35. Bash RO, Crist WM, Shuster JJ, Link MP, Amylon M, Pullen J et al. Clinical features and outcome of T-cell acute lymphoblastic leukemia in childhood with respect to alterations at the TAL1 locus: a Pediatric Oncology Group study. Blood 1993; 81: 2110–2117.

    CAS  PubMed  Google Scholar 

  36. Cave H, Suciu S, Preudhomme C, Poppe B, Robert A, Uyttebroeck A et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood 2004; 103: 442–450.

    CAS  PubMed  Google Scholar 

  37. van Grotel M, Meijerink JP, Beverloo HB, Langerak AW, Buys-Gladdines JG, Schneider P et al. The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. Haematologica 2006; 91: 1212–1221.

    PubMed  Google Scholar 

  38. Mansur MB, Emerenciano M, Brewer L, Sant'Ana M, Mendonca N, Thuler LC et al. SIL-TAL1 fusion gene negative impact in T-cell acute lymphoblastic leukemia outcome. Leuk Lymphoma 2009; 50: 1318–1325.

    CAS  PubMed  Google Scholar 

  39. Wang D, Zhu G, Wang N, Zhou X, Yang Y, Zhou S et al. SIL-TAL1 rearrangement is related with poor outcome: a study from a Chinese institution. PLoS One 2013; 8: e73865.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ballerini P, Landman-Parker J, Cayuela JM, Asnafi V, Labopin M, Gandemer V et al. Impact of genotype on survival of children with T-cell acute lymphoblastic leukemia treated according to the French protocol FRALLE-93: the effect of TLX3/HOX11L2 gene expression on outcome. Haematologica 2008; 93: 1658–1665.

    PubMed  Google Scholar 

  41. D'Angio M, Valsecchi MG, Testi AM, Conter V, Nunes V, Parasole R et al. Clinical features and outcome of SIL/TAL1-positive T-cell acute lymphoblastic leukemia in children and adolescents: a 10-year experience of the AIEOP group. Haematologica 2015; 100: e10–e13.

    PubMed  PubMed Central  Google Scholar 

  42. Sarmento LM, Barata JT . Therapeutic potential of Notch inhibition in T-cell acute lymphoblastic leukemia: rationale, caveats and promises. Exp Rev Anticancer Ther 2011; 11: 1403–1415.

    CAS  Google Scholar 

  43. Elwood NJ, Begley CG . Reconstitution of mice with bone marrow cells expressing the SCL gene is insufficient to cause leukemia. Cell Growth Differ 1995; 6: 19–25.

    CAS  PubMed  Google Scholar 

  44. Curtis DJ, Robb L, Strasser A, Begley CG . The CD2-scl transgene alters the phenotype and frequency of T-lymphomas in N-ras transgenic or p53 deficient mice. Oncogene 1997; 15: 2975–2983.

    CAS  PubMed  Google Scholar 

  45. Robb L, Rasko JE, Bath ML, Strasser A, Begley CG . scl, a gene frequently activated in human T cell leukaemia, does not induce lymphomas in transgenic mice. Oncogene 1995; 10: 205–209.

    CAS  PubMed  Google Scholar 

  46. Gerby B, Tremblay CS, Tremblay M, Rojas-Sutterlin S, Herblot S, Hebert J et al. SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 2014; 10: e1004768.

    PubMed  PubMed Central  Google Scholar 

  47. McCormack MP, Shields BJ, Jackson JT, Nasa C, Shi W, Slater NJ et al. Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL. Blood 2013; 122: 2093–2103.

    CAS  PubMed  Google Scholar 

  48. O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 2006; 107: 781–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. O'Neil J, Shank J, Cusson N, Murre C, Kelliher M . TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 2004; 5: 587–596.

    CAS  PubMed  Google Scholar 

  50. Kelliher MA, Seldin DC, Leder P . Tal-1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. EMBO J 1996; 15: 5160–5166.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Condorelli GL, Facchiano F, Valtieri M, Proietti E, Vitelli L, Lulli V et al. T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res 1996; 56: 5113–5119.

    CAS  PubMed  Google Scholar 

  52. Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL et al. E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 1997; 17: 4782–4791.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T . SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1: 138–144.

    CAS  PubMed  Google Scholar 

  54. Shank-Calvo JA, Draheim K, Bhasin M, Kelliher MA . p16Ink4a or p19Arf loss contributes to Tal1-induced leukemogenesis in mice. Oncogene 2006; 25: 3023–3031.

    CAS  PubMed  Google Scholar 

  55. Aplan PD, Jones CA, Chervinsky DS, Zhao X, Ellsworth M, Wu C et al. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J 1997; 16: 2408–2419.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. O'Neil J, Billa M, Oikemus S, Kelliher M . The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice. Oncogene 2001; 20: 3897–3905.

    CAS  PubMed  Google Scholar 

  57. Cardoso BA, de Almeida SF, Laranjeira AB, Carmo-Fonseca M, Yunes JA, Coffer PJ et al. TAL1/SCL is downregulated upon histone deacetylase inhibition in T-cell acute lymphoblastic leukemia cells. Leukemia 2011; 25: 1578–1586.

    CAS  PubMed  Google Scholar 

  58. Wen J, Huang S, Pack SD, Yu X, Brandt SJ, Noguchi CT . Tal1/SCL binding to pericentromeric DNA represses transcription. J Biol Chem 2005; 280: 12956–12966.

    CAS  PubMed  Google Scholar 

  59. Hu X, Li X, Valverde K, Fu X, Noguchi C, Qiu Y et al. LSD1-mediated epigenetic modification is required for TAL1 function and hematopoiesis. Proc Natl Acad Sci USA 2009; 106: 10141–10146.

    CAS  PubMed  Google Scholar 

  60. Huang S, Qiu Y, Shi Y, Xu Z, Brandt SJ . P/CAF-mediated acetylation regulates the function of the basic helix-loop-helix transcription factor TAL1/SCL. EMBO J 2000; 19: 6792–6803.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Palomero T, Odom DT, O'Neil J, Ferrando AA, Margolin A, Neuberg DS et al. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Blood 2006; 108: 986–992.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sanda T, Lawton Lee N, Barrasa MI, Fan ZiP, Kohlhammer H, Gutierrez A et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 2012; 22: 209–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen Q, Cheng JT, Tasi LH, Schneider N, Buchanan G, Carroll A et al. The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J 1990; 9: 415–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Carroll AJ, Crist WM, Link MP, Amylon MD, Pullen DJ, Ragab AH et al. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1990; 76: 1220–1224.

    CAS  PubMed  Google Scholar 

  65. Aplan PD, Raimondi SC, Kirsch IR . Disruption of the SCL gene by a t(1;3) translocation in a patient with T cell acute lymphoblastic leukemia. J Exp Med 1992; 176: 1303–1310.

    CAS  PubMed  Google Scholar 

  66. Janssen JW, Ludwig WD, Sterry W, Bartram CR . SIL-TAL1 deletion in T-cell acute lymphoblastic leukemia. Leukemia 1993; 7: 1204–1210.

    CAS  PubMed  Google Scholar 

  67. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J 1990; 9: 3343–3351.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Patel B, Kang Y, Cui K, Litt M, Riberio MS, Deng C et al. Aberrant TAL1 activation is mediated by an interchromosomal interaction in human T-cell acute lymphoblastic leukemia. Leukemia 2014; 28: 349–361.

    CAS  PubMed  Google Scholar 

  69. Gottgens B, Barton LM, Gilbert JG, Bench AJ, Sanchez MJ, Bahn S et al. Analysis of vertebrate SCL loci identifies conserved enhancers. Nat Biotechnol 2000; 18: 181–186.

    CAS  PubMed  Google Scholar 

  70. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 2014; 346: 1373–1377.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Navarro JM, Touzart A, Pradel LC, Loosveld M, Koubi M, Fenouil R et al. Site- and allele-specific polycomb dysregulation in T-cell leukaemia. Nat Commun 2015; 6: 6094.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433: 769–773.

    CAS  PubMed  Google Scholar 

  73. Bartel DP . MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004; 116: 281–297.

    CAS  PubMed  Google Scholar 

  74. Correia NC, Melao A, Povoa V, Sarmento L, Gomez de Cedron M, Malumbres M et al. microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia. Oncotarget 2016; 7: 8268–8281.

    PubMed  PubMed Central  Google Scholar 

  75. Choong ML, Yang HH, McNiece I . MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp Hematol 2007; 35: 551–564.

    CAS  PubMed  Google Scholar 

  76. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078–5083.

    CAS  PubMed  Google Scholar 

  77. Felli N, Pedini F, Romania P, Biffoni M, Morsilli O, Castelli G et al. MicroRNA 223-dependent expression of LMO2 regulates normal erythropoiesis. Haematologica 2009; 94: 479–486.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010; 143: 46–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 2013; 494: 497–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsu HL, Huang L, Tsan JT, Funk W, Wright WE, Hu JS et al. Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins. Mol Cell Biol 1994; 14: 1256–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ono Y, Fukuhara N, Yoshie O . TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol Cell Biol 1998; 18: 6939–6950.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lecuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher C et al. The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 2002; 100: 2430–2440.

    CAS  PubMed  Google Scholar 

  83. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Palii CG, Perez-Iratxeta C, Yao Z, Cao Y, Dai F, Davison J et al. Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages. EMBO J 2011; 30: 494–509.

    CAS  PubMed  Google Scholar 

  85. Fleskens V, Mokry M, van der Leun AM, Huppelschoten S, Pals CE, Peeters J et al. FOXP3 can modulate TAL1 transcriptional activity through interaction with LMO2. Oncogene 2015; 35: 4141–4148.

    PubMed  Google Scholar 

  86. Bernard M, Delabesse E, Smit L, Millien C, Kirsch IR, Strominger JL et al. Helix-loop-helix (E2-5, HEB, TAL1 and Id1) protein interaction with the TCRalphadelta enhancers. Int Immunol 1998; 10: 1539–1549.

    CAS  PubMed  Google Scholar 

  87. Hansson A, Manetopoulos C, Jönsson J-I, Axelson H . The basic helix–loop–helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pTα genes. Biochem Biophys Res Commun 2003; 312: 1073–1081.

    CAS  PubMed  Google Scholar 

  88. Benyoucef A, Calvo J, Renou L, Arcangeli ML, van den Heuvel A, Amsellem S et al. The SCL/TAL1 transcription factor represses the stress protein DDiT4/REDD1 in human hematopoietic stem/progenitor cells. Stem Cells 2015; 33: 2268–2279.

    CAS  PubMed  Google Scholar 

  89. Ono Y, Fukuhara N, Yoshie O . Transcriptional activity of TAL1 in T cell acute lymphoblastic leukemia (T-ALL) requires RBTN1 or -2 and induces TALLA1, a highly specific tumor marker of T-ALL. J Biol Chem 1997; 272: 4576–4581.

    CAS  PubMed  Google Scholar 

  90. Kusy S, Gerby B, Goardon N, Gault N, Ferri F, Gerard D et al. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia. J Exp Med 2010; 207: 2141–2156.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Thoms JA, Birger Y, Foster S, Knezevic K, Kirschenbaum Y, Chandrakanthan V et al. ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer. Blood 2011; 117: 7079–7089.

    CAS  PubMed  Google Scholar 

  92. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 2007; 39: 593–595.

    CAS  PubMed  Google Scholar 

  93. Chang PY, Draheim K, Kelliher MA, Miyamoto S . NFKB1 is a direct target of the TAL1 oncoprotein in human T leukemia cells. Cancer Res 2006; 66: 6008–6013.

    CAS  PubMed  Google Scholar 

  94. Fabbri M, Croce CM, Calin GA . MicroRNAs in the ontogeny of leukemias and lymphomas. Leuk Lymphoma 2009; 50: 160–170.

    CAS  PubMed  Google Scholar 

  95. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 2011; 43: 673–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sanghvi VR, Mavrakis KJ, Van der Meulen J, Boice M, Wolfe AL, Carty M et al. Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia. Sci Signal 2014; 7: ra111.

    PubMed  PubMed Central  Google Scholar 

  97. Correia NC, Durinck K, Leite AP, Ongenaert M, Rondou P, Speleman F et al. Novel TAL1 targets beyond protein-coding genes: identification of TAL1-regulated microRNAs in T-cell acute lymphoblastic leukemia. Leukemia 2013; 27: 1603–1606.

    CAS  PubMed  Google Scholar 

  98. Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med 2013; 210: 1545–1557.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007; 129: 617–631.

    CAS  PubMed  Google Scholar 

  100. Wang Z, Inuzuka H, Zhong J, Wan L, Fukushima H, Sarkar FH et al. Tumor suppressor functions of FBW7 in cancer development and progression. FEBS Lett 2012; 586: 1409–1418.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Alvarez-Dominguez JR, Hu W, Yuan B, Shi J, Park SS, Gromatzky AA et al. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood 2014; 123: 570–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Paralkar VR, Mishra T, Luan J, Yao Y, Kossenkov AV, Anderson SM et al. Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 2014; 123: 1927–1937.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cheng JT, Cobb MH, Baer R . Phosphorylation of the TAL1 oncoprotein by the extracellular-signal-regulated protein kinase ERK1. Mol Cell Biol 1993; 13: 801–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Prasad KS, Brandt SJ . Target-dependent effect of phosphorylation on the DNA binding activity of the TAL1/SCL oncoprotein. J Biol Chem 1997; 272: 11457–11462.

    CAS  PubMed  Google Scholar 

  105. Uzan B, Poglio S, Gerby B, Wu CL, Gross J, Armstrong F et al. Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression. EMBO Mol Med 2014; 6: 821–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Benyoucef A, Palii CG, Wang C, Porter CJ, Chu A, Dai F et al. UTX inhibition as selective epigenetic therapy against TAL1-driven T cell acute lymphoblastic leukemia. Genes Dev 2016; 30: 508–521.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work conducted in JTB’s lab that relates to this review was supported by Liga Portuguesa Contra o Cancro (Terry Fox Award) and by Fundação para a Ciência e a Tecnologia (project PTDC/BIM-ONC/1548/2012). JTB is an FCT investigator (consolidation grant). FP’s lab is funded by INSERM, Ligue Nationale contre le Cancer, Institut du Cancer and RISK-IR network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Pflumio or J T Barata.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correia, N., Arcangeli, ML., Pflumio, F. et al. Stem Cell Leukemia: how a TALented actor can go awry on the hematopoietic stage. Leukemia 30, 1968–1978 (2016). https://doi.org/10.1038/leu.2016.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.169

This article is cited by

Search

Quick links