Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Subtype-specific patterns of molecular mutations in acute myeloid leukemia

Subjects

Abstract

Acute myeloid leukemia (AML) can be grouped into morphologically or genetically defined subtypes. Today, the AML phenotype–genotype associations, that is, FAB/WHO (French–American–British/World Health Organization) definitions and recurrent molecular mutations, are not fully understood. Therefore, we evaluated the impact of molecular mutations on the AML differentiation stage by molecular profiling of 4373 adult de novo AML patients in 7 cytomorphological subtypes. We investigated mutations in 20 genes, including myeloid transcription factors (CEBPA, RUNX1), tumor suppressors (TP53, WT1), DNA modifiers (DNMT3A, IDH1/2, TET2), chromatin modifiers (ASXL1, MLL), signal transduction genes (FLT3, KRAS, NRAS) and NPM1. The most frequently mutated genes per cytomorphological subtype were RUNX1 in M0 (43%), NPM1 in M1 (42%), DNMT3A in M2 (26%), NPM1 in M4 (57%), M5a (49%) and M5b (70%) and TP53 in M6 (36%). Although some gene mutations were frequent in several cytomorphological subtypes, a series of associations of co-occurring mutations with distinct phenotypes were identified for molecularly defined subcohorts. FLT3, NPM1 and WT1 mutations were associated with an immature phenotype in myeloblastic AML, whereas other combinations involving ASXL1, RUNX1, MLL-PTD, CEBPA or KRAS were more frequent in myeloblastic AML with maturation. Within the NPM1 mutated subcohort, ASXL1 mutations were significantly associated with a monoblastic differentiation and DNMT3A mutations with a monocytic phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458.

    Article  CAS  PubMed  Google Scholar 

  2. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  3. Le Beau MM, Larson RA, Bitter MA, Vardiman JW, Golomb HM, Rowley JD . Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med 1983; 309: 630–636.

    Article  CAS  PubMed  Google Scholar 

  4. Mitelman F, Heim S . Quantitative acute leukemia cytogenetics. Genes Chromosomes Cancer 1992; 5: 57–66.

    Article  CAS  PubMed  Google Scholar 

  5. Haferlach T, Schoch C, Schnittger S, Kern W, Loffler H, Hiddemann W . Distinct genetic patterns can be identified in acute monoblastic and acute monocytic leukaemia (FAB AML M5a and M5b): a study of 124 patients. Br J Haematol 2002; 118: 426–431.

    Article  CAS  PubMed  Google Scholar 

  6. Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T . AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 2003; 102: 2395–2402.

    Article  CAS  PubMed  Google Scholar 

  7. Federici L, Falini B . Nucleophosmin mutations in acute myeloid leukemia: a tale of protein unfolding and mislocalization. Protein Sci 2013; 22: 545–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kroschinsky FP, Schakel U, Fischer R, Mohr B, Oelschlaegel U, Repp R et al. Cup-like acute myeloid leukemia: new disease or artificial phenomenon? Haematologica 2008; 93: 283–286.

    Article  PubMed  Google Scholar 

  9. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352: 254–266.

    Article  CAS  PubMed  Google Scholar 

  10. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  PubMed  Google Scholar 

  11. Falini B, Nicoletti I, Bolli N, Martelli MP, Liso A, Gorello P et al. Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica 2007; 92: 519–532.

    Article  CAS  PubMed  Google Scholar 

  12. Raimondi SC, Dube ID, Valentine MB, Mirro Jr J, Watt HJ, Larson RA et al. Clinicopathologic manifestations and breakpoints of the t(3;5) in patients with acute nonlymphocytic leukemia. Leukemia 1989; 3: 42–47.

    CAS  PubMed  Google Scholar 

  13. Falini B, Bigerna B, Pucciarini A, Tiacci E, Mecucci C, Morris SW et al. Aberrant subcellular expression of nucleophosmin and NPM-MLF1 fusion protein in acute myeloid leukaemia carrying t(3;5): a comparison with NPMc+ AML. Leukemia 2006; 20: 368–371.

    Article  CAS  PubMed  Google Scholar 

  14. Kohlmann A, Bacher U, Schnittger S, Haferlach T . Perspective on how to approach molecular diagnostics in acute myeloid leukemia and myelodysplastic syndromes in the era of next-generation sequencing. Leuk Lymphoma 2013; 55: 1725–1733.

    Article  Google Scholar 

  15. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  16. Patel JP, Gonen M, Figueroa ME, Fernandez HF, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fasan A, Haferlach C, Alpermann T, Jeromin S, Grossmann V, Eder C et al. The role of different genetic subtypes of CEBPA mutated AML. Leukemia 2014; 28: 794–803.

    Article  CAS  PubMed  Google Scholar 

  18. Haferlach C, Mecucci C, Schnittger S, Kohlmann A, Mancini M, Cuneo A et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 2009; 114: 3024–3032.

    Article  CAS  PubMed  Google Scholar 

  19. Schnittger S, Dicker F, Kern W, Wendland N, Sundermann J, Alpermann T et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood 2011; 117: 2348–2357.

    Article  CAS  PubMed  Google Scholar 

  20. Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 2013; 27: 82–91.

    Article  CAS  PubMed  Google Scholar 

  21. Schnittger S, Bacher U, Kern W, Alpermann T, Haferlach C, Haferlach T . Prognostic impact of FLT3-ITD load in NPM1 mutated acute myeloid leukemia. Leukemia 2011; 25: 1297–1304.

    Article  CAS  PubMed  Google Scholar 

  22. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn. International Agency for Research on Cancer (IARC): Lyon, 2008.

    Google Scholar 

  23. Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 2012; 120: 2963–2972.

    Article  CAS  PubMed  Google Scholar 

  24. Shen Y, Zhu YM, Fan X, Shi JY, Wang QR, Yan XJ et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood 2011; 118: 5593–5603.

    Article  CAS  PubMed  Google Scholar 

  25. Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22: 915–931.

    Article  CAS  PubMed  Google Scholar 

  26. Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients 2. Leukemia 2014; 28: 1586–1595.

    Article  CAS  PubMed  Google Scholar 

  27. Arber DA, Brunning RD, Le Beau MM, Falini B, Vardiman J, Porwit A et alAcute myeloid leukemia with recurrent genetic abnormalities In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al(eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. International Agency for Research on Cancer (IARC): Lyon, 2008; pp 110–123.

    Google Scholar 

  28. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 2002; 16: 53–59.

    Article  CAS  PubMed  Google Scholar 

  29. Haferlach C, Rieder H, Lillington DM, Dastugue N, Hagemeijer A, Harbott J et al. Proposals for standardized protocols for cytogenetic analyses of acute leukemias, chronic lymphocytic leukemia, chronic myeloid leukemia, chronic myeloproliferative disorders, and myelodysplastic syndromes. Genes Chromosomes Cancer 2007; 46: 494–499.

    Article  CAS  PubMed  Google Scholar 

  30. Schoch C, Haferlach T, Bursch S, Gerstner D, Schnittger S, Dugas M et al. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH. Genes Chromosomes Cancer 2002; 35: 20–29.

    Article  PubMed  Google Scholar 

  31. Shaffer LG, McGowan-Jordan J, Schmid M . ISCN 2013: An International System for Human Cytogenetic Nomenclature. Karger: Basel, New York, 2013.

    Google Scholar 

  32. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T . Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 2004; 104: 3078–3085.

    Article  CAS  PubMed  Google Scholar 

  33. Kern W, Bacher U, Haferlach C, Schnittger S, Haferlach T . The role of multiparameter flow cytometry for disease monitoring in AML. Best Pract Res Clin Haematol 2010; 23: 379–390.

    Article  CAS  PubMed  Google Scholar 

  34. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 2002; 100: 59–66.

    CAS  PubMed  Google Scholar 

  35. Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S . Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—-an analysis of 3082 patients. Blood 2008; 111: 2527–2537.

    Article  CAS  PubMed  Google Scholar 

  36. Weisser M, Kern W, Schoch C, Hiddemann W, Haferlach T, Schnittger S . Risk assessment by monitoring expression levels of partial tandem duplications in the MLL gene in acute myeloid leukemia during therapy. Haematologica 2005; 90: 881–889.

    CAS  PubMed  Google Scholar 

  37. Roller A, Grossmann V, Bacher U, Poetzinger F, Weissmann S, Nadarajah N et al. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia 2013; 27: 1573–1578.

    Article  CAS  PubMed  Google Scholar 

  38. Schnittger S, Haferlach C, Ulke M, Alpermann T, Kern W, Haferlach T . IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 2010; 116: 5486–5496.

    Article  CAS  PubMed  Google Scholar 

  39. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol 2010; 28: 3858–3865.

    Article  CAS  PubMed  Google Scholar 

  40. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S . Implications of NRAS mutations in AML: a study of 2502 patients. Blood 2006; 107: 3847–3853.

    Article  CAS  PubMed  Google Scholar 

  41. Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 2012; 26: 934–942.

    Article  CAS  PubMed  Google Scholar 

  42. Krauth MT, Alpermann T, Bacher U, Eder C, Dicker F, Ulke M et al. WT1 mutations are secondary events in AML, show varying frequencies and impact on prognosis between genetic subgroups. Leukemia 2014; 29: 660–667.

    Article  PubMed  Google Scholar 

  43. Haferlach C, Dicker F, Kohlmann A, Schindela S, Weiss T, Kern W et al. AML with CBFB-MYH11 rearrangement demonstrate RAS pathway alterations in 92% of all cases including a high frequency of NF1 deletions. Leukemia 2010; 24: 1065–1069.

    Article  CAS  PubMed  Google Scholar 

  44. Grossmann V, Bacher U, Haferlach C, Schnittger S, Potzinger F, Weissmann S et al. Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics. Leukemia 2013; 27: 1940–1943.

    Article  CAS  PubMed  Google Scholar 

  45. Schoch C, Haferlach T . Cytogenetics in acute myeloid leukemia. Curr Oncol Rep 2002; 4: 390–397.

    Article  PubMed  Google Scholar 

  46. Kao HW, Liang DC, Wu JH, Kuo MC, Wang PN, Yang CP et al. Gene mutation patterns in patients with minimally differentiated acute myeloid leukemia 4. Neoplasia 2014; 16: 481–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the co-workers in our laboratory for their excellent technical assistance and all clinicians for sending samples to our laboratory for diagnostic purposes, and for providing clinical information and follow-up data

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Haferlach.

Ethics declarations

Competing interests

TH, WK and CH have equity ownership of the MLL Munich Leukemia Laboratory GmbH. DR and KP are employed by the MLL Munich Leukemia Laboratory GmbH and the MLL2 s.r.o., respectively.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rose, D., Haferlach, T., Schnittger, S. et al. Subtype-specific patterns of molecular mutations in acute myeloid leukemia. Leukemia 31, 11–17 (2017). https://doi.org/10.1038/leu.2016.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.163

This article is cited by

Search

Quick links