Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras

Abstract

Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation because of NRAS, KRAS, PTPN11, CBL and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3′-OH kinase (PI3K)/Akt cascades. Mx1-Cre, KrasD12 and Mx1-Cre, Nf1flox/ mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, KrasD12 mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Emanuel PD . Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leukemia 2008; 22: 1335–1342.

    Article  CAS  PubMed  Google Scholar 

  2. Bacher U, Haferlach T, Schnittger S, Kreipe H, Kroger N . Recent advances in diagnosis, molecular pathology and therapy of chronic myelomonocytic leukaemia. Br J Haematol 2011; 153: 149–167.

    Article  PubMed  Google Scholar 

  3. Locatelli F, Nollke P, Zecca M, Korthof E, Lanino E, Peters C et al. Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood 2005; 105: 410–419.

    Article  CAS  PubMed  Google Scholar 

  4. Loh ML . Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol 2011; 152: 677–687.

    Article  CAS  PubMed  Google Scholar 

  5. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol 2010; 28: 3858–3865.

    Article  CAS  PubMed  Google Scholar 

  6. Ward AF, Braun BS, Shannon KM . Targeting oncogenic Ras signaling in hematologic malignancies. Blood 2012; 120: 3397–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3: 11–22.

    Article  CAS  PubMed  Google Scholar 

  8. Vivanco I, Sawyers CL . The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  PubMed  Google Scholar 

  9. Diaz-Flores E, Goldschmidt H, Depeille P, Ng V, Akutagawa J, Krisman K et al. PLC-γ and PI3K link cytokines to ERK activation in hematopoietic cells with normal and oncogenic Kras. Sci Signal 2013; 6: ra105.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 2004; 101: 597–602.

    Article  CAS  PubMed  Google Scholar 

  11. Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113: 528–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sabnis AJ, Cheung LS, Dail M, Kang HC, Santaguida M, Hermiston ML et al. Oncogenic Kras initiates leukemia in hematopoietic stem cells. PLoS Biol 2009; 7: e59.

    Article  PubMed  Google Scholar 

  13. Lyubynska N, Gorman MF, Lauchle JO, Hong WX, Akutagawa JK, Shannon K et al. A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice. Sci Transl Med 2011; 3: 76ra27.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chang T, Krisman K, Theobald EH, Xu J, Akutagawa J, Lauchle JO et al. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest 2013; 123: 335–339.

    Article  CAS  PubMed  Google Scholar 

  15. Liu YL, Castleberry RP, Emanuel PD . PTEN deficiency is a common defect in juvenile myelomonocytic leukemia. Leuk Res 2009; 33: 671–677.

    Article  CAS  PubMed  Google Scholar 

  16. Goodwin CB, Li XJ, Mali RS, Chan G, Kang M, Liu Z et al. PI3K p110δ uniquely promotes gain-of-function Shp2-induced GM-CSF hypersensitivity in a model of JMML. Blood 2014; 123: 2838–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gritsman K, Yuzugullu H, Von T, Yan H, Clayton L, Fritsch C et al. Hematopoiesis and RAS-driven myeloid leukemia differentially require PI3K isoform p110α. J Clin Invest 2014; 124: 1794–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan L . Abstract #DDT01-1: MK-2206: a potent oral allosteric AKT inhibitor. Cancer Res 2009; 69 (9 Suppl): DDT01-01.

    Google Scholar 

  19. Van Meter ME, Diaz-Flores E, Archard JA, Passegue E, Irish JM, Kotecha N et al. K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood 2007; 109: 3945–3952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Core Team. R, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2014.

  21. Folkes A, Ahmadi K, Alderton W, Alix S, Baker S, Box G et al. The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J Med Chem 2008; 51: 5522–5532.

    Article  CAS  PubMed  Google Scholar 

  22. Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther 2009; 8: 1725–1738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O'Brien C, Wallin JJ, Sampath D, GuhaThakurta D, Savage H, Punnoose EA et al. Predictive biomarkers of sensitivity to the phosphatidylinositol 3′ kinase inhibitor. GDC-0941 in breast cancer preclinical models. Clin Cancer Res 2010; 16: 3670–3683.

    Article  CAS  PubMed  Google Scholar 

  24. Wallin JJ, Guan J, Prior WW, Lee LB, Berry L, Belmont LD et al. GDC-0941, a novel class I selective PI3K inhibitor, enhances the efficacy of docetaxel in human breast cancer models by increasing cell death in vitro and in vivo. Clin Cancer Res 2012; 18: 3901–3911.

    Article  CAS  PubMed  Google Scholar 

  25. Spoerke JM, O'Brien C, Huw L, Koeppen H, Fridlyand J, Brachmann RK et al. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res 2012; 18: 6771–6783.

    Article  CAS  PubMed  Google Scholar 

  26. Dail M, Wong J, Lawrence J, O'Connor D, Nakitandwe J, Chen SC et al. Loss of oncogenic Notch1 with resistance to a PI3K inhibitor in T-cell leukaemia. Nature 2014; 513: 512–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Braun BS, Archard JA, Van Ziffle JA, Tuveson DA, Jacks TE, Shannon K . Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo. Blood 2006; 108: 2041–2044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pronk CJ, Rossi DJ, Mansson R, Attema JL, Norddahl GL, Chan CK et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 2007; 1: 428–442.

    Article  CAS  PubMed  Google Scholar 

  29. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B . The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010; 11: 329–341.

    Article  CAS  PubMed  Google Scholar 

  30. Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GP, Brandhuber BJ . Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 2010; 5: e12913.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rehan M, Beg MA, Parveen S, Damanhouri GA, Zaher GF . Computational insights into the inhibitory mechanism of human AKT1 by an orally active inhibitor, MK-2206. PLoS One 2014; 9: e109705.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Le DT, Kong N, Zhu Y, Lauchle JO, Aiyigari A, Braun BS et al. Somatic inactivation of Nf1 in hematopoietic cells results in a progressive myeloproliferative disorder. Blood 2004; 103: 4243–4250.

    Article  CAS  PubMed  Google Scholar 

  33. Matsuguchi T, Kraft AS . Regulation of myeloid cell growth by distinct effectors of Ras. Oncogene 1998; 17: 2701–2709.

    Article  CAS  PubMed  Google Scholar 

  34. Shieh A, Ward AF, Donlan KL, Harding-Theobald ER, Xu J, Mullighan CG et al. Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo. Blood 2013; 121: 4884–4893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Staffas A, Karlsson C, Persson M, Palmqvist L, Bergo MO . Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice. Leukemia 2015; 29: 1032–1040.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Socolovsky M, Gross AW, Lodish HF . Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 2003; 102: 3938–3946.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Lodish HF . Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors. Blood 2004; 104: 1679–1687.

    Article  CAS  PubMed  Google Scholar 

  38. Tang P, Gao C, Li A, Aster J, Sun L, Chai L . Differential roles of Kras and Pten in murine leukemogenesis. Leukemia 2013; 27: 1210–1214.

    Article  CAS  PubMed  Google Scholar 

  39. Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, Ognibene A et al. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochim Biophys Acta 2010; 1803: 991–1002.

    Article  CAS  PubMed  Google Scholar 

  40. Elso CM, Roberts LJ, Smyth GK, Thomson RJ, Baldwin TM, Foote SJ et al. Leishmaniasis host response loci (lmr1-3) modify disease severity through a Th1/Th2-independent pathway. Genes Immun 2004; 5: 93–100.

    Article  CAS  PubMed  Google Scholar 

  41. Smyth G, Thompson R, Satterley K . Available at: http://bioinf.wehi.edu.au/software/compareCurves/ (last accessed 17 December 2013).

Download references

Acknowledgements

This work was supported by the NF Preclinical Consortium and NF Therapeutic Consortium of the Children's Tumor Foundation, and by the National Cancer Institute Cancer Center Support Grant P30CA082103. BSB was a St Baldrick’s Foundation Scholar and received support for this work from NIH awards U54CA143874 and R01CA173085, an ASH Bridge Grant from the American Society of Hematology and the Frank A Campini Foundation. TQH was supported by NIH training grants T32CA128583 and T32HD044331 and CLC was supported by T32CA108462. TC is a St Baldrick’s Foundation Fellow. MD was supported by grants from the William Lawrence and Blanche Hughes Foundation and NIH award K99CA157950.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B S Braun.

Ethics declarations

Competing interests

DS and LF are employed by Genentech; MD and TC are currently employed by Genentech, but were not when contributing to this work.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akutagawa, J., Huang, T., Epstein, I. et al. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia 30, 1335–1343 (2016). https://doi.org/10.1038/leu.2016.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.14

This article is cited by

Search

Quick links