Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Identification of Ezrin-Radixin-Moesin proteins as novel regulators of pathogenic B-cell receptor signaling and tumor growth in diffuse large B-cell lymphoma

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a hematological cancer associated with an aggressive clinical course. The predominant subtypes of DLBCL display features of chronic or tonic B-cell antigen receptor (BCR) signaling. However, it is not known whether the spatial organization of the BCR contributes to the regulation of pro-survival signaling pathways and cell growth. Here, we show that primary DLBCL tumors and patient-derived DLBCL cell lines contain high levels of phosphorylated Ezrin-Radixin-Moesin (ERM) proteins. The surface BCRs in both activated B cell and germinal B cell subtype DLBCL cells co-segregate with phosphoERM suggesting that the cytoskeletal network may support localized BCR signaling and contribute to pathogenesis. Indeed, ablation of membrane-cytoskeletal linkages by dominant-negative mutants, pharmacological inhibition and knockdown of ERM proteins disrupted cell surface BCR organization, inhibited proximal and distal BCR signaling, and reduced the growth of DLBCL cell lines. In vivo administration of the ezrin inhibitor retarded the growth of DLBCL tumor xenografts, concomitant with reduction in intratumor phosphoERM levels, dampened pro-survival signaling and induction of apoptosis. Our results reveal a novel ERM-based spatial mechanism that is coopted by DLBCL cells to sustain tumor cell growth and survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Coiffier B . Current strategies for the treatment of diffuse large B cell lymphoma. Curr Opin Hematol 2005; 12: 259–265.

    Article  CAS  Google Scholar 

  2. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM . A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci USA 2003; 100: 9991–9996.

    Article  CAS  Google Scholar 

  3. Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci USA 2008; 105: 13520–13525.

    Article  CAS  Google Scholar 

  4. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003; 198: 851–862.

    Article  CAS  Google Scholar 

  5. Schneider C, Pasqualucci L, Dalla-Favera R . Molecular pathogenesis of diffuse large B-cell lymphoma. Semin Diagn Pathol 2011; 28: 167–177.

    Article  Google Scholar 

  6. Shaffer AL 3rd, Young RM, Staudt LM . Pathogenesis of human B cell lymphomas. Annu Rev Immunol 2012; 30: 565–610.

    Article  CAS  Google Scholar 

  7. Sehn LH, Connors JM . Treatment of aggressive non-Hodgkin's lymphoma: a north American perspective. Oncology (Williston Park) 2005; 19: 26–34.

    Google Scholar 

  8. Sehn LH, Connors JM . Treatment of diffuse large B-cell lymphoma: a risk-based approach. Clin Lymphoma Myeloma 2006; 7: S14–S19.

    Article  CAS  Google Scholar 

  9. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010; 463: 88–92.

    Article  CAS  Google Scholar 

  10. Young RM, Staudt LM . Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 2013; 12: 229–243.

    Article  CAS  Google Scholar 

  11. Ansell SM, Hodge LS, Secreto FJ, Manske M, Braggio E, Price-Troska T et al. Activation of TAK1 by MYD88 L265P drives malignant B-cell Growth in non-Hodgkin lymphoma. Blood Cancer J 2014; 4: e183.

    Article  CAS  Google Scholar 

  12. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 2008; 319: 1676–1679.

    Article  CAS  Google Scholar 

  13. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009; 459: 717–721.

    Article  CAS  Google Scholar 

  14. Ibrutinib approved for mantle cell lymphoma. Cancer Discov 2014; 4: OF1.

  15. Cheng S, Ma J, Guo A, Lu P, Leonard JP, Coleman M et al. BTK inhibition targets in vivo CLL proliferation through its effects on B-cell receptor signaling activity. Leukemia 2013; 28: 649–657.

    Article  Google Scholar 

  16. Fehon RG, McClatchey AI, Bretscher A . Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 2010; 11: 276–287.

    Article  CAS  Google Scholar 

  17. Yonemura S, Matsui T, Tsukita S . Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J Cell Sci 2002; 115: 2569–2580.

    CAS  Google Scholar 

  18. Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D et al. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol 2004; 164: 653–659.

    Article  CAS  Google Scholar 

  19. Bretscher A, Chambers D, Nguyen R, Reczek D . ERM-Merlin and EBP50 protein families in plasma membrane organization and function. Annu Rev Cell Dev Biol 2000; 16: 113–143.

    Article  CAS  Google Scholar 

  20. Yonemura S, Tsukita S, Tsukita S . Direct involvement of ezrin/radixin/moesin (ERM)-binding membrane proteins in the organization of microvilli in collaboration with activated ERM proteins. J Cell Biol 1999; 145: 1497–1509.

    Article  CAS  Google Scholar 

  21. Viswanatha R, Bretscher A, Garbett D . Dynamics of ezrin and EBP50 in regulating microvilli on the apical aspect of epithelial cells. Biochem Soc Trans 2014; 42: 189–194.

    Article  CAS  Google Scholar 

  22. Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity 2010; 32: 187–199.

    Article  CAS  Google Scholar 

  23. Gupta N, Wollscheid B, Watts JD, Scheer B, Aebersold R, DeFranco AL . Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol 2006; 7: 625–633.

    Article  CAS  Google Scholar 

  24. Viola A, Gupta N . Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nat Rev Immunol 2007; 7: 889–896.

    Article  CAS  Google Scholar 

  25. Batista FD, Treanor B, Harwood NE . Visualizing a role for the actin cytoskeleton in the regulation of B-cell activation. Immunol Rev 2010; 237: 191–204.

    Article  CAS  Google Scholar 

  26. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK . Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity 2010; 32: 778–789.

    Article  CAS  Google Scholar 

  27. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK . Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med 2010; 207: 1095–1111.

    Article  CAS  Google Scholar 

  28. Klasener K, Maity PC, Hobeika E, Yang J, Reth M . B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. eLife 2014; 3: e02069.

    Article  Google Scholar 

  29. Treanor B, Depoil D, Bruckbauer A, Batista FD . Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med 2011; 208: 1055–1068.

    Article  CAS  Google Scholar 

  30. Pore D, Parameswaran N, Matsui K, Stone MB, Saotome I, McClatchey AI et al. Ezrin tunes the magnitude of humoral immunity. J Immunol 2013; 191: 4048–4058.

    Article  CAS  Google Scholar 

  31. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 2004; 103: 275–282.

    Article  CAS  Google Scholar 

  32. Parameswaran N, Matsui K, Gupta N . Conformational switching in ezrin regulates morphological and cytoskeletal changes required for B cell chemotaxis. J Immunol 2011; 186: 4088–4097.

    Article  CAS  Google Scholar 

  33. Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M . Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol 1997; 138: 423–434.

    Article  CAS  Google Scholar 

  34. Parameswaran N, Enyindah-Asonye G, Bagheri N, Shah NB, Gupta N . Spatial coupling of JNK activation to the B cell antigen receptor by tyrosine-phosphorylated ezrin. J Immunol 2013; 190: 2017–2026.

    Article  CAS  Google Scholar 

  35. Khanna C, Wan X, Bose S, Cassaday R, Olomu O, Mendoza A et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 2004; 10: 182–186.

    Article  CAS  Google Scholar 

  36. Li Q, Wu M, Wang H, Xu G, Zhu T, Zhang Y et al. Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells. Cancer Lett 2008; 261: 55–63.

    Article  CAS  Google Scholar 

  37. Monni R, Haddaoui L, Naba A, Gallais I, Arpin M, Mayeux P et al. Ezrin is a target for oncogenic Kit mutants in murine erythroleukemia. Blood 2008; 111: 3163–3172.

    Article  CAS  Google Scholar 

  38. Bulut G, Hong SH, Chen K, Beauchamp EM, Rahim S, Kosturko GW et al. Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene 2012; 31: 269–281.

    Article  CAS  Google Scholar 

  39. Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M et al. Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 2005; 11: 28–40.

    Article  CAS  Google Scholar 

  40. Kloo B, Nagel D, Pfeifer M, Grau M, Duwel M, Vincendeau M et al. Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci USA 2011; 108: 272–277.

    Article  CAS  Google Scholar 

  41. Pierce SK, Liu W . The tipping points in the initiation of B cell signalling: how small changes make big differences. Nat Rev Immunol 2010; 10: 767–777.

    Article  CAS  Google Scholar 

  42. Tolar P, Hanna J, Krueger PD, Pierce SK . The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 2009; 30: 44–55.

    Article  CAS  Google Scholar 

  43. Tolar P, Meckel T . Imaging B-cell receptor signaling by single-molecule techniques. Methods Mol Biol 2009; 571: 437–453.

    Article  CAS  Google Scholar 

  44. Yu D, Cook MC, Shin DM, Silva DG, Marshall J, Toellner KM et al. Axon growth and guidance genes identify T-dependent germinal centre B cells. Immunol Cell Biol 2008; 86: 3–14.

    Article  CAS  Google Scholar 

  45. Bretscher A, Edwards K, Fehon RG . ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002; 3: 586–599.

    Article  CAS  Google Scholar 

  46. Fornasiero EF, Opazo F . Super-resolution imaging for cell biologists: Concepts, applications, current challenges and developments. Bioessays 2015; 37: 436–451.

    Article  Google Scholar 

  47. Lillemeier BF, Mortelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM . TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 2010; 11: 90–96.

    Article  CAS  Google Scholar 

  48. Shelby SA, Holowka D, Baird B, Veatch SL . Distinct stages of stimulated FcepsilonRI receptor clustering and immobilization are identified through superresolution imaging. Biophys J 2013; 105: 2343–2354.

    Article  CAS  Google Scholar 

  49. Mattila PK, Feest C, Depoil D, Treanor B, Montaner B, Otipoby KL et al. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity 2013; 38: 461–474.

    Article  CAS  Google Scholar 

  50. Blonska M, Lin X . CARMA1-mediated NF-kappaB and JNK activation in lymphocytes. Immunol Rev 2009; 228: 199–211.

    Article  CAS  Google Scholar 

  51. Rickert RC . New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol 2013; 13: 578–591.

    Article  CAS  Google Scholar 

  52. Baracho GV, Miletic AV, Omori SA, Cato MH, Rickert RC . Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation. Curr Opin Immunol 2011; 23: 178–183.

    Article  CAS  Google Scholar 

  53. Delgado P, Cubelos B, Calleja E, Martinez-Martin N, Cipres A, Merida I et al. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol 2009; 10: 880–888.

    Article  CAS  Google Scholar 

  54. Clark MR, Campbell KS, Kazlauskas A, Johnson SA, Hertz M, Potter TA et al. The B cell antigen receptor complex: association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science 1992; 258: 123–126.

    Article  CAS  Google Scholar 

  55. Cherukuri A, Cheng PC, Sohn HW, Pierce SK . The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity 2001; 14: 169–179.

    Article  CAS  Google Scholar 

  56. Depoil D, Fleire S, Treanor BL, Weber M, Harwood NE, Marchbank KL et al. CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol 2008; 9: 63–72.

    Article  CAS  Google Scholar 

  57. Zotos D, Tarlinton DM . Determining germinal centre B cell fate. Trends Immunol 2012; 33: 281–288.

    Article  CAS  Google Scholar 

  58. Allen CD, Okada T, Tang HL, Cyster JG . Imaging of germinal center selection events during affinity maturation. Science 2007; 315: 528–531.

    Article  CAS  Google Scholar 

  59. Ohnishi K, Melchers F . The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-B cell receptor signaling. Nat Immunol 2003; 4: 849–856.

    Article  CAS  Google Scholar 

  60. Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H et al. Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res 2011; 71: 1721–1729.

    Article  CAS  Google Scholar 

  61. Elliott BE, Meens JA, SenGupta SK, Louvard D, Arpin M . The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. Breast Cancer Res 2005; 7: R365–R373.

    Article  CAS  Google Scholar 

  62. Legg JW, Lewis CA, Parsons M, Ng T, Isacke CM . A novel PKC-regulated mechanism controls C4D44 ezrin association and directional cell motility. Nat Cell Biol 2002; 4: 399–407.

    Article  CAS  Google Scholar 

  63. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 2008; 111: 2230–2237.

    Article  CAS  Google Scholar 

  64. Idelalisib approved for trio of blood cancers. Cancer Discov 2014; 4: OF6.

  65. Naylor TL, Tang H, Ratsch BA, Enns A, Loo A, Chen L et al. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas. Cancer Res 2011; 71: 2643–2653.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by grants to NG (AI081743 from NIH and Cancer Research Institute Investigator Award). We thank Yvonne Parker for assistance with the animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Gupta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pore, D., Bodo, J., Danda, A. et al. Identification of Ezrin-Radixin-Moesin proteins as novel regulators of pathogenic B-cell receptor signaling and tumor growth in diffuse large B-cell lymphoma. Leukemia 29, 1857–1867 (2015). https://doi.org/10.1038/leu.2015.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.86

This article is cited by

Search

Quick links