Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Refinement of IKZF1 status in pediatric Philadelphia-positive acute lymphoblastic leukemia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Biondi A, Schrappe M, De Lorenzo P, Castor A, Lucchini G, Gandemer V et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol 2012; 13: 936–945.

    Article  CAS  Google Scholar 

  2. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  Google Scholar 

  3. Van der Veer A, Zaliova M, Mottadelli F, De Lorenzo P, Te Kronnie G, Harrison CJ et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood 2014; 123: 1691–1698.

    Article  CAS  Google Scholar 

  4. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LAA, Miller CB et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470–480.

    Article  CAS  Google Scholar 

  5. Palmi C, Valsecchi MG, Longinotti G, Silvestri D, Carrino V, Conter V et al. What is the relevance of Ikaros gene deletions as a prognostic marker in pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia? Haematologica 2013; 98: 1226–1231.

    Article  CAS  Google Scholar 

  6. Sun L, Liu A, Georgopoulos K . Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 1996; 15: 5358–5369.

    Article  CAS  Google Scholar 

  7. Schjerven H, McLaughlin J, Arenzana TL, Frietze S, Cheng D, Wadsworth SE et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol 2013; 14: 1073–1083.

    Article  CAS  Google Scholar 

  8. Cobb BS, Morales-Alcelay S, Kleiger G, Brown KE, Fisher AG, Smale ST . Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. Genes Dev 2000; 14: 2146–2160.

    Article  CAS  Google Scholar 

  9. Kastner P, Dupuis A, Gaub M-P, Herbrecht R, Lutz P, Chan S . Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia. Am J Blood Res 2013; 3: 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153–166.

    Article  CAS  Google Scholar 

  11. Aricò M, Schrappe M, Hunger SP, Carroll WL, Conter V, Galimberti S et al. Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol 2010; 28: 4755–4761.

    Article  Google Scholar 

  12. Kohlmann A, Klein H-U, Weissmann S, Bresolin S, Chaplin T, Cuppens H et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 2011; 25: 1840–1848.

    Article  CAS  Google Scholar 

  13. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  Google Scholar 

  14. Ng PC, Henikoff S . Predicting deleterious amino acid substitutions. Genome Res 2001; 11: 863–874.

    Article  CAS  Google Scholar 

  15. Raetz EA, Carroll WL . Refining prognosis in BCR-ABL1-positive ALL. Blood 2014; 123: 1626–1627.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Aurélie Caye and all the pediatricians from the Société Française des Cancer de l’Enfant (SFCE). This work was supported by Czech Ministry of Health NT 13170-4 (to MZ), Czech Science Foundation GACR (grant P304/12/2214 to EF), the Italian Associations for Cancer Research (AIRC, to CG), the Italian Ministry of University and Research (MIUR, to AB) and the Fondazione Cariplo (to CG and GtK). The research leading to these results has received funding from the European Union’s Seventh Framework Program (PF7/2007-2013) under the project ENCCA, grant agreement HEALTH-F2-2011-261474 (MGV, GtK, MS, GC, AB and MLdB) and ERA-net TRANSCAN project TRANSCALL (GB, MS, GC and GtK).

Disclaimer

These funding sources had no role in the collection, analysis or interpretation of the results, or in writing the manuscript and the decision for submission of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G te Kronnie.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lana, T., de Lorenzo, P., Bresolin, S. et al. Refinement of IKZF1 status in pediatric Philadelphia-positive acute lymphoblastic leukemia. Leukemia 29, 2107–2110 (2015). https://doi.org/10.1038/leu.2015.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.78

This article is cited by

Search

Quick links