Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes

Abstract

Myelodysplastic syndromes (MDSs) are a group of heterogeneous clonal hematologic malignancies that are characterized by defective bone marrow (BM) hematopoiesis and by the occurrence of intramedullary apoptosis. During the past decade, the identification of key genetic and epigenetic alterations in patients has improved our understanding of the pathophysiology of this disease. However, the specific molecular mechanisms leading to the pathogenesis of MDS have largely remained obscure. Recently, essential evidence supporting the direct role of innate immune abnormalities in MDS has been obtained, including the identification of multiple key regulators that are overexpressed or constitutively activated in BM hematopoietic stem and progenitor cells. Mounting experimental results indicate that the dysregulation of these molecules leads to abnormal hematopoiesis, unbalanced cell death and proliferation in patients’ BM, and has an important role in the pathogenesis of MDS. Furthermore, there is compelling evidence that the deregulation of innate immune and inflammatory signaling also affects other cells from the immune system and the BM microenvironment, which establish aberrant associations with hematopoietic precursors and contribute to the MDS phenotype. Therefore, the deregulation of innate immune and inflammatory signaling should be considered as one of the driving forces in the pathogenesis of MDS. In this article, we review and update the advances in this field, summarizing the results from the most recent studies and discussing their clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD . Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 2007; 7: 118–129.

    CAS  PubMed  Google Scholar 

  2. Haferlach T . Molecular genetics in myelodysplastic syndromes. Leuk Res 2012; 36: 1459–1462.

    CAS  PubMed  Google Scholar 

  3. de Hollanda A, Beucher A, Henrion D, Ghali A, Lavigne C, Levesque H et al. Systemic and immune manifestations in myelodysplasia: a multicenter retrospective study. Arthritis Care Res 2011; 63: 1188–1194.

    CAS  Google Scholar 

  4. Mekinian A, Braun T, Decaux O, Falgarone G, Toussirot E, Raffray L et al. Inflammatory arthritis in patients with myelodysplastic syndromes: a multicenter retrospective study and literature review of 68 cases. Medicine 2014; 93: 1–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hebbar M, Kozlowski D, Wattel E, Mastrini S, Dievart M, Duclos B et al. Association between myelodysplastic syndromes and inflammatory bowel diseases. Report of seven new cases and review of the literature. Leukemia 1997; 11: 2188–2191.

    CAS  PubMed  Google Scholar 

  6. Wang Z, Zhou Y, Liu Y . Concurrent inflammatory bowel disease and myelodysplastic syndrome: report of nine new cases and a review of the literature. Digest Dis Sci 2008; 53: 1929–1932.

    PubMed  Google Scholar 

  7. Nakamura F, Watanabe T, Hori K, Ohara Y, Yamashita K, Tsuji Y et al. Simultaneous occurrence of inflammatory bowel disease and myelodysplastic syndrome due to chromosomal abnormalities in bone marrow cells. Digestion 2009; 79: 215–219.

    CAS  PubMed  Google Scholar 

  8. Al Ustwani O, Ford LA, Sait SJ, Block AM, Barcos M, Vigil CE et al. Myelodysplastic syndromes and autoimmune diseases—case series and review of literature. Leuk Res 2013; 37: 894–899.

    PubMed  Google Scholar 

  9. Fain O, Hamidou M, Cacoub P, Godeau B, Wechsler B, Paries J et al. Vasculitides associated with malignancies: analysis of sixty patients. Arthritis Rheum 2007; 57: 1473–1480.

    PubMed  Google Scholar 

  10. Dalamaga M, Petridou E, Cook FE, Trichopoulos D . Risk factors for myelodysplastic syndromes: a case-control study in Greece. Cancer Causes Control 2002; 13: 603–608.

    PubMed  Google Scholar 

  11. Anderson LA, Pfeiffer RM, Landgren O, Gadalla S, Berndt SI, Engels EA . Risks of myeloid malignancies in patients with autoimmune conditions. Br J Cancer 2009; 100: 822–828.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wagner P, Olsson H, Lidgren L, Robertsson O, Ranstam J . Increased cancer risks among arthroplasty patients: 30 year follow-up of the Swedish Knee Arthroplasty Register. Eur J Cancer 2011; 47: 1061–1071.

    PubMed  Google Scholar 

  13. Kristinsson SY, Bjorkholm M, Hultcrantz M, Derolf AR, Landgren O, Goldin LR . Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol 2011; 29: 2897–2903.

    PubMed  PubMed Central  Google Scholar 

  14. Bernstein CN, Blanchard JF, Kliewer E, Wajda A . Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 2001; 91: 854–862.

    CAS  PubMed  Google Scholar 

  15. Askling J, Brandt L, Lapidus A, Karlen P, Bjorkholm M, Lofberg R et al. Risk of haematopoietic cancer in patients with inflammatory bowel disease. Gut 2005; 54: 617–622.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Titmarsh GJ, McMullin MF, McShane CM, Clarke M, Engels EA, Anderson LA . Community-acquired infections and their association with myeloid malignancies. Cancer Epidemiol 2014; 38: 56–61.

    PubMed  Google Scholar 

  17. Shetty V, Mundle S, Alvi S, Showel M, Broady-Robinson L, Dar S et al. Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes. Leuk Res 1996; 20: 891–900.

    CAS  PubMed  Google Scholar 

  18. Allampallam K, Shetty V, Hussaini S, Mazzoran L, Zorat F, Huang R et al. Measurement of mRNA expression for a variety of cytokines and its receptors in bone marrows of patients with myelodysplastic syndromes. Anticancer Res 1999; 19: 5323–5328.

    CAS  PubMed  Google Scholar 

  19. Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M et al. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 1997; 11: 2049–2054.

    CAS  PubMed  Google Scholar 

  20. Deeg HJ, Beckham C, Loken MR, Bryant E, Lesnikova M, Shulman HM et al. Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk Lymphoma 2000; 37: 405–414.

    CAS  PubMed  Google Scholar 

  21. Flores-Figueroa E, Gutierrez-Espindola G, Montesinos JJ, Arana-Trejo RM, Mayani H . In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res 2002; 26: 677–686.

    CAS  PubMed  Google Scholar 

  22. Gersuk GM, Beckham C, Loken MR, Kiener P, Anderson JE, Farrand A et al. A role for tumour necrosis factor-alpha, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol 1998; 103: 176–188.

    CAS  PubMed  Google Scholar 

  23. Sawanobori M, Yamaguchi S, Hasegawa M, Inoue M, Suzuki K, Kamiyama R et al. Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leuk Res 2003; 27: 583–591.

    CAS  PubMed  Google Scholar 

  24. Hsu HC, Lee YM, Tsai WH, Jiang ML, Ho CH, Ho CK et al. Circulating levels of thrombopoietic and inflammatory cytokines in patients with acute myeloblastic leukemia and myelodysplastic syndrome. Oncology 2002; 63: 64–69.

    CAS  PubMed  Google Scholar 

  25. Qadir K, Bokhari SA, Miller MA, Siegrist C, Bismayer J, Raza A . In situ localization of transforming growth factor beta and S-phase cells in patients with acute myeloid leukemia and myelodysplastic syndrome. Anticancer Res 1992; 12: 403–407.

    CAS  PubMed  Google Scholar 

  26. Brunner B, Gunsilius E, Schumacher P, Zwierzina H, Gastl G, Stauder R . Blood levels of angiogenin and vascular endothelial growth factor are elevated in myelodysplastic syndromes and in acute myeloid leukemia. J Hematother Stem Cell Res 2002; 11: 119–125.

    CAS  PubMed  Google Scholar 

  27. Verstovsek S, Kantarjian H, Manshouri T, Cortes J, Giles FJ, Rogers A et al. Prognostic significance of cellular vascular endothelial growth factor expression in chronic phase chronic myeloid leukemia. Blood 2002; 99: 2265–2267.

    CAS  PubMed  Google Scholar 

  28. Tsimberidou AM, Estey E, Wen S, Pierce S, Kantarjian H, Albitar M et al. The prognostic significance of cytokine levels in newly diagnosed acute myeloid leukemia and high-risk myelodysplastic syndromes. Cancer 2008; 113: 1605–1613.

    PubMed  Google Scholar 

  29. Meyers CA, Albitar M, Estey E . Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 2005; 104: 788–793.

    CAS  PubMed  Google Scholar 

  30. Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR . Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 2010; 116: 4251–4261.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng X, Scheinberg P, Wu CO, Samsel L, Nunez O, Prince C et al. Cytokine signature profiles in acquired aplastic anemia and myelodysplastic syndromes. Haematologica 2011; 96: 602–606.

    CAS  PubMed  Google Scholar 

  32. Pardanani A, Finke C, Lasho TL, Al-Kali A, Begna KH, Hanson CA et al. IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic syndromes. Leukemia 2012; 26: 693–699.

    CAS  PubMed  Google Scholar 

  33. Kordasti SY, Afzali B, Lim Z, Ingram W, Hayden J, Barber L et al. IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol 2009; 145: 64–72.

    CAS  PubMed  Google Scholar 

  34. Berthon C, Fontenay M, Corm S, Briche I, Allorge D, Hennart B et al. Metabolites of tryptophan catabolism are elevated in sera of patients with myelodysplastic syndromes and inhibit hematopoietic progenitor amplification. Leuk Res 2013; 37: 573–579.

    CAS  PubMed  Google Scholar 

  35. Raza A, Mundle S, Iftikhar A, Gregory S, Marcus B, Khan Z et al. Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis. Am J Hematol 1995; 48: 143–154.

    CAS  PubMed  Google Scholar 

  36. Bouscary D, De Vos J, Guesnu M, Jondeau K, Viguier F, Melle J et al. Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 1997; 11: 839–845.

    CAS  PubMed  Google Scholar 

  37. Gupta P, Niehans GA, LeRoy SC, Gupta K, Morrison VA, Schultz C et al. Fas ligand expression in the bone marrow in myelodysplastic syndromes correlates with FAB subtype and anemia, and predicts survival. Leukemia 1999; 13: 44–53.

    CAS  PubMed  Google Scholar 

  38. Maciejewski J, Selleri C, Anderson S, Young NS . Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 1995; 85: 3183–3190.

    CAS  PubMed  Google Scholar 

  39. Zeng W, Miyazato A, Chen G, Kajigaya S, Young NS, Maciejewski JP . Interferon-gamma-induced gene expression in CD34 cells: identification of pathologic cytokine-specific signature profiles. Blood 2006; 107: 167–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aggarwal BB . Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3: 745–756.

    CAS  PubMed  Google Scholar 

  41. Kerbauy DM, Lesnikov V, Abbasi N, Seal S, Scott B, Deeg HJ . NF-kappaB and FLIP in arsenic trioxide (ATO)-induced apoptosis in myelodysplastic syndromes (MDSs). Blood 2005; 106: 3917–3925.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pellagatti A, Cazzola M, Giagounidis A, Perry J, Malcovati L, Della Porta MG et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia 2010; 24: 756–764.

    CAS  PubMed  Google Scholar 

  43. Verma A, Platanias LC . Signaling via the interferon-alpha receptor in chronic myelogenous leukemia cells. Leuk Lymphoma 2002; 43: 703–709.

    CAS  PubMed  Google Scholar 

  44. Navas T, Zhou L, Estes M, Haghnazari E, Nguyen AN, Mo Y et al. Inhibition of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment. Leuk Lymphoma 2008; 49: 1963–1975.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Takeuchi O, Akira S . Pattern recognition receptors and inflammation. Cell 2010; 140: 805–820.

    CAS  PubMed  Google Scholar 

  46. Li J, Wang X, Zhang F, Yin H . Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol Ther 2013; 138: 441–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 801–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rhyasen GW, Starczynowski DT . Deregulation of microRNAs in myelodysplastic syndrome. Leukemia 2012; 26: 13–22.

    CAS  PubMed  Google Scholar 

  49. Maratheftis CI, Andreakos E, Moutsopoulos HM, Voulgarelis M . Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes. Clin Cancer Res 2007; 13: 1154–1160.

    CAS  PubMed  Google Scholar 

  50. Kuninaka N, Kurata M, Yamamoto K, Suzuki S, Umeda S, Kirimura S et al. Expression of Toll-like receptor 9 in bone marrow cells of myelodysplastic syndromes is down-regulated during transformation to overt leukemia. Exp Mol Pathol 2010; 88: 293–298.

    CAS  PubMed  Google Scholar 

  51. Wei Y, Dimicoli S, Bueso-Ramos C, Chen R, Yang H, Neuberg D et al. Toll-like receptor alterations in myelodysplastic syndrome. Leukemia 2013; 27: 1832–1840.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Velegraki M, Papakonstanti E, Mavroudi I, Psyllaki M, Tsatsanis C, Oulas A et al. Impaired clearance of apoptotic cells leads to HMGB1 release in the bone marrow of patients with myelodysplastic syndromes and induces TLR4-mediated cytokine production. Haematologica 2013; 98: 1206–1215.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hofmann WK, de Vos S, Komor M, Hoelzer D, Wachsman W, Koeffler HP . Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 2002; 100: 3553–3560.

    CAS  PubMed  Google Scholar 

  54. Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 2008; 112: 3412–3424.

    CAS  PubMed  Google Scholar 

  55. Gondek LP, Tiu R, O'Keefe CL, Sekeres MA, Theil KS, Maciejewski JP . Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 2008; 111: 1534–1542.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dimicoli S, Wei Y, Bueso-Ramos C, Yang H, Dinardo C, Jia Y et al. Overexpression of the toll-like receptor (TLR) signaling adaptor MYD88, but lack of genetic mutation, in myelodysplastic syndromes. PLoS One 2013; 8: e71120.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell 2013; 24: 90–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei Y, Chen R, Dimicoli S, Bueso-Ramos C, Neuberg D, Pierce S et al. Global H3K4me3 genome mapping reveals alterations of innate immunity signaling and overexpression of JMJD3 in human myelodysplastic syndrome CD34+ cells. Leukemia 2013; 27: 2177–2186.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rhyasen GW, Bolanos L, Starczynowski DT . Differential IRAK signaling in hematologic malignancies. Exp Hematol 2013; 41: 1005–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Barreyro L, Will B, Bartholdy B, Zhou L, Todorova TI, Stanley RF et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood 2012; 120: 1290–1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat Med 2010; 16: 49–58.

    CAS  PubMed  Google Scholar 

  62. Boiko JR, Borghesi L . Hematopoiesis sculpted by pathogens: Toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine 2012; 57: 1–8.

    CAS  PubMed  Google Scholar 

  63. Sioud M, Floisand Y, Forfang L, Lund-Johansen F . Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Mol Biol 2006; 364: 945–954.

    CAS  PubMed  Google Scholar 

  64. De Luca K, Frances-Duvert V, Asensio MJ, Ihsani R, Debien E, Taillardet M et al. The TLR1/2 agonist PAM(3)CSK(4) instructs commitment of human hematopoietic stem cells to a myeloid cell fate. Leukemia 2009; 23: 2063–2074.

    CAS  PubMed  Google Scholar 

  65. Fiedler K, Kokai E, Bresch S, Brunner C . MyD88 is involved in myeloid as well as lymphoid hematopoiesis independent of the presence of a pathogen. Am J Blood Res 2013; 3: 124–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 2011; 186: 5367–5375.

    CAS  PubMed  Google Scholar 

  67. Eisenmann KM, Dykema KJ, Matheson SF, Kent NF, DeWard AD, West RA et al. 5q- myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. Oncogene 2009; 28: 3429–3441.

    CAS  PubMed  Google Scholar 

  68. Keerthivasan G, Mei Y, Zhao B, Zhang L, Harris CE, Gao J et al. Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS. Blood 2014; 124: 780–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Perkins ND, Gilmore TD . Good cop, bad cop: the different faces of NF-kappaB. Cell Death Diff 2006; 13: 759–772.

    CAS  Google Scholar 

  70. Pyatt DW, Stillman WS, Yang Y, Gross S, Zheng JH, Irons RD . An essential role for NF-kappaB in human CD34(+) bone marrow cell survival. Blood 1999; 93: 3302–3308.

    CAS  PubMed  Google Scholar 

  71. Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F et al. NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood 2006; 107: 1156–1165.

    CAS  PubMed  Google Scholar 

  72. Fabre C, Carvalho G, Tasdemir E, Braun T, Ades L, Grosjean J et al. NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 2007; 26: 4071–4083.

    CAS  PubMed  Google Scholar 

  73. Stein SJ, Baldwin AS . Deletion of the NF-kappaB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 2013; 121: 5015–5024.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhao C, Xiu Y, Ashton J, Xing L, Morita Y, Jordan CT et al. Noncanonical NF-kappaB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions. Stem Cells 2012; 30: 709–718.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schepers H, Eggen BJ, Schuringa JJ, Vellenga E . Constitutive activation of NF-kappa B is not sufficient to disturb normal steady-state hematopoiesis. Haematologica 2006; 91: 1710–1711.

    PubMed  Google Scholar 

  76. Rupec RA, Jundt F, Rebholz B, Eckelt B, Weindl G, Herzinger T et al. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity 2005; 22: 479–491.

    CAS  PubMed  Google Scholar 

  77. Hawley RG, Fong AZ, Burns BF, Hawley TS . Transplantable myeloproliferative disease induced in mice by an interleukin 6 retrovirus. J Exp Med 1992; 176: 1149–1163.

    CAS  PubMed  Google Scholar 

  78. Felli N, Pedini F, Zeuner A, Petrucci E, Testa U, Conticello C et al. Multiple members of the TNF superfamily contribute to IFN-gamma-mediated inhibition of erythropoiesis. J Immunol 2005; 175: 1464–1472.

    CAS  PubMed  Google Scholar 

  79. Yang L, Dybedal I, Bryder D, Nilsson L, Sitnicka E, Sasaki Y et al. IFN-gamma negatively modulates self-renewal of repopulating human hemopoietic stem cells. J Immunol 2005; 174: 752–757.

    CAS  PubMed  Google Scholar 

  80. Into T, Kiura K, Yasuda M, Kataoka H, Inoue N, Hasebe A et al. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol 2004; 6: 187–199.

    CAS  PubMed  Google Scholar 

  81. Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A . The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J 2000; 19: 3325–3336.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    CAS  PubMed  Google Scholar 

  83. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120–4126.

    CAS  PubMed  Google Scholar 

  84. Flores-Figueroa E, Montesinos JJ, Flores-Guzman P, Gutierrez-Espindola G, Arana-Trejo RM, Castillo-Medina S et al. Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leuk Res 2008; 32: 1407–1416.

    CAS  PubMed  Google Scholar 

  85. Klaus M, Stavroulaki E, Kastrinaki MC, Fragioudaki P, Giannikou K, Psyllaki M et al. Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cells Dev 2010; 19: 1043–1054.

    CAS  PubMed  Google Scholar 

  86. Wang Z, Tang X, Xu W, Cao Z, Sun L, Li W et al. The different immunoregulatory functions on dendritic cells between mesenchymal stem cells derived from bone marrow of patients with low-risk or high-risk myelodysplastic syndromes. PLoS One 2013; 8: e57470.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 2014; 14: 824–837.

    CAS  PubMed  Google Scholar 

  88. Kitagawa M, Yamaguchi S, Takahashi M, Tanizawa T, Hirokawa K, Kamiyama R . Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia. Leukemia 1998; 12: 486–492.

    CAS  PubMed  Google Scholar 

  89. Stirewalt DL, Mhyre AJ, Marcondes M, Pogosova-Agadjanyan E, Abbasi N, Radich JP et al. Tumour necrosis factor-induced gene expression in human marrow stroma: clues to the pathophysiology of MDS? Br J Haematol 2008; 140: 444–453.

    CAS  PubMed  Google Scholar 

  90. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu J, Fortenbery N et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest 2013; 123: 4595–4611.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 2007; 13: 1042–1049.

    CAS  PubMed  Google Scholar 

  93. Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011; 470: 359–365.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lechner MG, Liebertz DJ, Epstein AL . Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 2010; 185: 2273–2284.

    CAS  PubMed  Google Scholar 

  95. Pang WW, Pluvinage JV, Price EA, Sridhar K, Arber DA, Greenberg PL et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci USA 2013; 110: 3011–3016.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fozza C, Contini S, Galleu A, Simula MP, Virdis P, Bonfigli S et al. Patients with myelodysplastic syndromes display several T-cell expansions, which are mostly polyclonal in the CD4(+) subset and oligoclonal in the CD8(+) subset. Exp Hematol 2009; 37: 947–955.

    CAS  PubMed  Google Scholar 

  97. Kotsianidis I, Bouchliou I, Nakou E, Spanoudakis E, Margaritis D, Christophoridou AV et al. Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia 2009; 23: 510–518.

    CAS  PubMed  Google Scholar 

  98. Lopes MR, Traina F, Campos Pde M, Pereira JK, Machado-Neto JA, Machado Hda C et al. IL10 inversely correlates with the percentage of CD8(+) cells in MDS patients. Leuk Res 2013; 37: 541–546.

    CAS  PubMed  Google Scholar 

  99. Sloand EM, Melenhorst JJ, Tucker ZC, Pfannes L, Brenchley JM, Yong A et al. T-cell immune responses to Wilms tumor 1 protein in myelodysplasia responsive to immunosuppressive therapy. Blood 2011; 117: 2691–2699.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Baumann I, Scheid C, Koref MS, Swindell R, Stern P, Testa NG . Autologous lymphocytes inhibit hemopoiesis in long-term culture in patients with myelodysplastic syndrome. Exp Hematol 2002; 30: 1405–1411.

    PubMed  Google Scholar 

  101. Zhang Z, Li X, Guo J, Xu F, He Q, Zhao Y et al. Interleukin-17 enhances the production of interferon-gamma and tumour necrosis factor-alpha by bone marrow T lymphocytes from patients with lower risk myelodysplastic syndromes. Eur J Haematol 2013; 90: 375–384.

    CAS  PubMed  Google Scholar 

  102. Zheng Z, Qianqiao Z, Qi H, Feng X, Chunkang C, Xiao L . In vitro deprivation of CD8(+)CD57(+)T cells promotes the malignant growth of bone marrow colony cells in patients with lower-risk myelodysplastic syndrome. Exp Hematol 2010; 38: 677–684.

    PubMed  Google Scholar 

  103. Kordasti SY, Ingram W, Hayden J, Darling D, Barber L, Afzali B et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 2007; 110: 847–850.

    CAS  PubMed  Google Scholar 

  104. Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 2007; 109: 4816–4824.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mailloux AW, Sugimori C, Komrokji RS, Yang L, Maciejewski JP, Sekeres MA et al. Expansion of effector memory regulatory T cells represents a novel prognostic factor in lower risk myelodysplastic syndrome. J Immunol 2012; 189: 3198–3208.

    CAS  PubMed  Google Scholar 

  106. Kiladjian JJ, Bourgeois E, Lobe I, Braun T, Visentin G, Bourhis JH et al. Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes. Leukemia 2006; 20: 463–470.

    CAS  PubMed  Google Scholar 

  107. Matsutani T, Yoshioka T, Tsuruta Y, Shimamoto T, Ohyashiki JH, Suzuki R et al. Determination of T-cell receptors of clonal CD8-positive T-cells in myelodysplastic syndrome with erythroid hypoplasia. Leuk Res 2003; 27: 305–312.

    CAS  PubMed  Google Scholar 

  108. Kook H, Zeng W, Guibin C, Kirby M, Young NS, Maciejewski JP . Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia. Exp Hematol 2001; 29: 1270–1277.

    CAS  PubMed  Google Scholar 

  109. Yang H, Bueso-Ramos C, DiNardo C, Estecio MR, Davanlou M, Geng QR et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 2014; 28: 1280–1288.

    CAS  PubMed  Google Scholar 

  110. Sternberg A, Killick S, Littlewood T, Hatton C, Peniket A, Seidl T et al. Evidence for reduced B-cell progenitors in early (low-risk) myelodysplastic syndrome. Blood 2005; 106: 2982–2991.

    CAS  PubMed  Google Scholar 

  111. Kiladjian JJ, Visentin G, Viey E, Chevret S, Eclache V, Stirnemann J et al. Activation of cytotoxic T-cell receptor gammadelta T lymphocytes in response to specific stimulation in myelodysplastic syndromes. Haematologica 2008; 93: 381–389.

    CAS  PubMed  Google Scholar 

  112. Epling-Burnette PK, McDaniel J, Wei S, List AF . Emerging immunosuppressive drugs in myelodysplastic syndromes. Exp Opin Emerg Drugs 2012; 17: 519–541.

    CAS  Google Scholar 

  113. Fang J, Rhyasen G, Bolanos L, Rasch C, Varney M, Wunderlich M et al. Cytotoxic effects of bortezomib in myelodysplastic syndrome/acute myeloid leukemia depend on autophagy-mediated lysosomal degradation of TRAF6 and repression of PSMA1. Blood 2012; 120: 858–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Navas TA, Mohindru M, Estes M, Ma JY, Sokol L, Pahanish P et al. Inhibition of overactivated p38 MAPK can restore hematopoiesis in myelodysplastic syndrome progenitors. Blood 2006; 108: 4170–4177.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Schinke C, Giricz O, Gordon SAK, Barreyro L, Bhagat TD, Pellagatti A et al. Inhibition of CXCR2 as a therapeutic strategy in AML and MDS [ASH 2013 Abstract 484]. Blood 2013; 122: 484.

    Google Scholar 

  116. Garcia-Manero G, Sekeres MA, List AF, Khoury HJ, Advani A, Jabbour E et al. Phase I dose-escalation/expansion study of ARRY-614 in patients with IPSS Low/Int-1 Risk Myelodysplastic Syndromes [ASH 2013 Abstract 484]. Blood 2013; 122: 387.

    Google Scholar 

  117. Reilly M, Miller RM, Thomson MH, Patris V, Ryle P, McLoughlin L et al. Randomized, double-blind, placebo-controlled, dose-escalating phase I, healthy subjects study of intravenous OPN-305, a humanized anti-TLR2 antibody. Clin Pharmacol Ther 2013; 94: 593–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou L, McMahon C, Bhagat T, Alencar C, Yu Y, Fazzari M et al. Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase. Cancer Res 2011; 71: 955–963.

    CAS  PubMed  Google Scholar 

  119. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 2010; 115: 3520–3530.

    CAS  PubMed  Google Scholar 

  120. Ganan-Gomez I, Wei Y, Yang H, Pierce S, Bueso-Ramos C, Calin G et al. Overexpression of miR-125a in myelodysplastic syndrome CD34+ cells modulates NF-kappaB activation and enhances erythroid differentiation arrest. PLoS One 2014; 9: e93404.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by MD Anderson Cancer Center Support Grant P30 CA016672. GG-M is also supported by the Edward P. Evans Foundation, Fundacion Ramon Areces, grant RP100202 from the Cancer Prevention & Research Institute of Texas (CPRIT) and by philanthropic contributions to MD Anderson’s MDS/AML Moon Shot Program. YW receives support from her DOD CA110791 Discovery Award. MC-C is funded by Fundacion Alfonso Martin-Escudero. DTS is funded by the NIH RO1 grants RO1HL111103, RO1HL114582, RO1DK102759 and by Gabrielle’s Angel Foundation. AV is supported by the Leukemia Lymphoma Society. US is a Research Scholar of the Leukemia & Lymphoma Society and a Diane and Arthur B. Belfer Faculty Scholar in Cancer Research of the Albert Einstein College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Garcia-Manero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gañán-Gómez, I., Wei, Y., Starczynowski, D. et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia 29, 1458–1469 (2015). https://doi.org/10.1038/leu.2015.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.69

This article is cited by

Search

Quick links