Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking

Abstract

Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein microdomains, known as lipid rafts, which float freely in the membrane bilayer. These structures have an important role in assembling signaling molecules (e.g., Rac-1, RhoH and Lyn) together with surface receptors, such as the CXCR4 receptor for α-chemokine stromal-derived factor-1, the α4β1-integrin receptor (VLA-4) for vascular cell adhesion molecule-1 and the c-kit receptor for stem cell factor, which together regulate several aspects of hematopoietic stem/progenitor cell (HSPC) biology. Here, we discuss the role of lipid raft integrity in the retention and quiescence of normal HSPCs in bone marrow niches as well as in regulating HSPC mobilization and homing. We will also discuss the pathological consequences of the defect in lipid raft integrity seen in paroxysmal nocturnal hemoglobinuria and the emerging evidence for the involvement of lipid rafts in hematological malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Goñi FM . The basic structure and dynamics of cell membranes: an update of the Singer–Nicolson model. Biochim Biophys Acta 2014; 1838: 1467–1476.

    Article  PubMed  Google Scholar 

  2. Róg T, Vattulainen I . Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184: 82–104.

    Article  PubMed  Google Scholar 

  3. Deleu M, Crowet JM, Nasir MN, Lins L . Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: a review. Biochim Biophys Acta 2014; 1838: 3171–3190.

    Article  CAS  PubMed  Google Scholar 

  4. Reeves VL, Thomas CM, Smart EJ . Lipid rafts, caveolae and GPI-linked proteins. Adv Exp Med Biol 2012; 729: 3–13.

    Article  CAS  PubMed  Google Scholar 

  5. Staubach S, Hanisch FG . Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteom 2011; 8: 263–277.

    Article  CAS  Google Scholar 

  6. Jahn T, Leifheit E, Gooch S, Sindhu S, Weinberg K . Lipid rafts are required for Kit survival and proliferation signals. Blood 2007; 110: 1739–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chae HD, Lee KE, Williams DA, Gu Y . Cross-talk between RhoH and Rac1 in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood 2008; 111: 2597–2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J 2006; 25: 3515–3523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee MY, Ryu JM, Lee SH, Park JH, Han HJ . Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J Lipid Res 2010; 51: 2082–2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guan JL . Cell biology. Integrins, rafts, Rac, and Rho. Science 2004; 303: 773–774.

    Article  CAS  PubMed  Google Scholar 

  11. Sheets ED, Holowka D, Baird B . Membrane organization in immunoglobulin E receptor signaling. Curr Opin Chem Biol 1999; 3: 95–99.

    Article  CAS  PubMed  Google Scholar 

  12. Janes PW, Ley SC, Magee AI, Kabouridis PS . The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 2000; 12: 23–34.

    Article  CAS  PubMed  Google Scholar 

  13. Gupta N, DeFranco AL . Lipid rafts and B cell signaling. Semin Cell Dev Biol 2007; 18: 616–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 2005; 105: 40–48.

    Article  CAS  PubMed  Google Scholar 

  15. Bauer N, Wilsch-Bräuninger M, Karbanová J, Fonseca AV, Strauss D, Freund D et al. Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles—a role of the endocytic-exocytic pathway. EMBO Mol Med 2011; 3: 398–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan SS, Yin Y, Lee T, Lai RC, Yeo RWY, Zhang B et al. Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane. J Extracell Vesicles 2013; 2; doi:10.3402/jev.v2i0.22614.

    Article  Google Scholar 

  17. Ziello JE, Huang Y, Jovin IS . Cellular endocytosis and gene delivery. Mol Med 2010; 16: 222–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brodsky RA . How do PIG-A mutant paroxysmal nocturnal hemoglobinuria stem cells achieve clonal dominance? Expert Rev Hematol 2009; 2: 353–356.

    Article  PubMed  Google Scholar 

  19. Ratajczak J, Kucia M, Mierzejewska K, Liu R, Kim CH, Natarajan N et al. A novel view of paroxysmal nocturnal hemoglobinuria pathogenesis: more motile PNH hematopoietic stem/progenitor cells displace normal HSPCs from their niches in bone marrow due to defective adhesion, enhanced migration and mobilization in response to erythrocyte-released sphingosine-1 phosphate gradient. Leukemia 2012; 26: 1722–1725.

    Article  CAS  PubMed  Google Scholar 

  20. Marconi M, Ascione B, Ciarlo L, Vona R, Garofalo T, Sorice M et al. Constitutive localization of DR4 in lipid rafts is mandatory for TRAIL-induced apoptosis in B-cell hematologic malignancies. Cell Death Dis 2013; 4: e863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qian H, Xia L, Ling P, Waxman S, Jing Y . CD44 ligation with A3D8 antibody induces apoptosis in acute myeloid leukemia cells through binding to CD44s and clustering lipid rafts. Cancer Biol Ther 2012; 13: 1276–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uddin S, Al-Kuraya KS . Localization of death receptor 4 in lipid rafts sensitizes chronic lymphocytic leukemia to chemotherapeutic drug mediated apoptosis. Leuk Lymphoma 2011; 52: 1176–1177.

    Article  PubMed  Google Scholar 

  23. Osterhues A, Liebmann S, Schmid M, Buk D, Huss R, Graeve L et al. Stem cells and experimental leukemia can be distinguished by lipid raft protein composition. Stem Cells Dev 2006; 15: 677–686.

    Article  CAS  PubMed  Google Scholar 

  24. Nozaki Y, Mitsumori T, Yamamoto T, Kawashima I, Shobu Y, Hamanaka S et al. Rituximab activates Syk and AKT in CD20-positive B cell lymphoma cells dependent on cell membrane cholesterol levels. Exp Hematol 2013; 41: 687–696.

    Article  CAS  PubMed  Google Scholar 

  25. Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 2004; 18: 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  26. Wu W, Kim CH, Liu R, Kucia M, Marlicz W, Greco N et al. The bone marrow-expressed antimicrobial cationic peptide LL-37 enhances the responsiveness of hematopoietic stem progenitor cells to an SDF-1 gradient and accelerates their engraftment after transplantation. Leukemia 2012; 26: 736–745.

    Article  CAS  PubMed  Google Scholar 

  27. Borkowska S, Poniewierska-Baran A, Schneider G, Suszynska M, Ratajczak J, Kucia M et al. Novel evidence that, in addition to proteolytic enzymes, lipolytic enzymes are involved in mobilization of hematopoietic stem/progenitor cells (HSPCs)—an important pro-mobilizing role identified for hematopoietic-specific phospholipase C (PLCβ2). Blood 2014; 124: S711.

    Google Scholar 

  28. Kinashi T St, Pierre Y, Springer TA . Expression of glycophosphatidylinositol-anchored and -non-anchored isoforms of vascular cell adhesion molecule 1 in murine stromal and endothelial cells. J Leukoc Biol 1995; 57: 168–173.

    Article  CAS  PubMed  Google Scholar 

  29. Tjwa M, Sidenius N, Moura R, Jansen S, Theunissen K, Andolfo A et al. Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells. J Clin Invest 2009; 119: 1008–1018.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonig H, Papayannopoulou T . Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia 2013; 27: 24–31.

    Article  CAS  PubMed  Google Scholar 

  31. Greenbaum AM, Link DC . Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 2011; 25: 211–217.

    Article  CAS  PubMed  Google Scholar 

  32. Lapidot T, Kollet O . The brain–bone–blood triad: traffic lights for stem-cell homing and mobilization. Hematol Am Soc Hematol Educ Program 2010 2010, 1–6.

    Article  PubMed  Google Scholar 

  33. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  34. Lévesque JP, Helwani FM, Winkler IG . The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24: 1979–1992.

    Article  PubMed  Google Scholar 

  35. Ratajczak MZ . A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia 2015; 29: 776–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J . Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010; 24: 1667–1675.

    Article  CAS  PubMed  Google Scholar 

  37. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  38. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Golan K, Vagima Y, Ludin A, Itkin T, Cohen-Gur S, Kalinkovich A et al. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 2012; 119: 2478–2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juarez JG, Harun N, Thien M, Welschinger R, Baraz R, Pena AD et al. Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 2012; 119: 707–716.

    Article  CAS  PubMed  Google Scholar 

  41. Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M, Morris AJ et al. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 2012; 26: 63–72.

    Article  CAS  PubMed  Google Scholar 

  42. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007; 131: 994–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rettig MP, Ansstas G, DiPersio JF . Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 2012; 26: 34–53.

    Article  CAS  PubMed  Google Scholar 

  44. Shirvaikar N, Marquez-Curtis LA, Shaw AR, Turner AR, Janowska-Wieczorek A . MT1-MMP association with membrane lipid rafts facilitates G-CSF—induced hematopoietic stem/progenitor cell mobilization. Exp Hematol 2010; 38: 823–835.

    Article  CAS  PubMed  Google Scholar 

  45. Schwab SR, Pereira JP, Matloubian M, Xu Y, Huang Y, Cyster JG . Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 2005; 309: 1735–1739.

    Article  CAS  PubMed  Google Scholar 

  46. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 1999; 10: 463–471.

    Article  CAS  PubMed  Google Scholar 

  47. Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE . Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 1000–1003.

    Article  CAS  PubMed  Google Scholar 

  48. Onai N, Zhang Yy, Yoneyama H, Kitamura T, Ishikawa S, Matsushima K . Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 2000; 96: 2074–2080.

    CAS  PubMed  Google Scholar 

  49. Kim CH, Wu W, Wysoczynski M, Abdel-Latif A, Sunkara M, Morris A . Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia 2012; 26: 106–116.

    Article  CAS  PubMed  Google Scholar 

  50. Rossi L, Manfredini R, Bertolini F, Ferrari D, Fogli M, Zini R et al. The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood 2007; 109: 533–542.

    Article  CAS  PubMed  Google Scholar 

  51. Hoggatt J, Pelus LM . Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia 2010; 24: 1993–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 2004; 103: 2981–2989.

    Article  CAS  PubMed  Google Scholar 

  53. Brunstein CG, McKenna DH, DeFor TE, Sumstad D, Paul P, Weisdorf DJ et al. Complement fragment 3a priming of umbilical cord blood progenitors: safety profile. Biol Blood Marrow Transplant 2013; 19: 1474–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Capitano ML, Hangoc G, Cooper S, Broxmeyer HE . Mild heat treatment primes human CD34+ cord blood cells for migration towards SDF-1a and enhances engraftment in an NSG mouse model. Stem Cells 2015; doi:10.1002/stem.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mierzejewska K, Rodriguez C, Sharma VR, Kucia M, Maciejewski JP, Ratajczak J et al. Novel evidence that PNH affected cells residing in bone marrow (BM) due to impaired incorporation of CXCR4 and VLA-4 into membrane lipid rafts show defective SDF-1- and VCAM-1-mediated retention in BM what leads to their increased motility and impaired interaction with the BM stem cell niches. Blood 2012; 120: S508 (abstract 1256).

    Google Scholar 

  56. Edidin M . The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 2003; 32: 257–283.

    Article  CAS  PubMed  Google Scholar 

  57. Calder PC . Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 2013; 75: 645–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stravodimou A, Voutsadakis IA . Statin use and peripheral blood progenitor cells mobilization in patients with multiple myeloma. Clin Transl Oncol 2014; 16: 85–90.

    Article  CAS  PubMed  Google Scholar 

  59. Caliceti C, Zambonin L, Rizzo B, Fiorentini D, Vieceli Dalla Sega F, Hrelia S et al. Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. Biomed Res Int 2014; 2014: 857504.

    PubMed  PubMed Central  Google Scholar 

  60. zum Büschenfelde CM, Wagner M, Lutzny G, Oelsner M, Feuerstacke Y, Decker T et al. Recruitment of PKC-βII to lipid rafts mediates apoptosis-resistance in chronic lymphocytic leukemia expressing ZAP-70. Leukemia 2010; 24: 141–152.

    Article  PubMed  Google Scholar 

  61. Tabe Y, Jin L, Iwabuchi K, Wang RY, Ichikawa N, Miida T et al. Role of stromal microenvironment in nonpharmacological resistance of CML to imatinib through Lyn/CXCR4 interactions in lipid rafts. Leukemia 2012; 26: 883–892.

    Article  CAS  PubMed  Google Scholar 

  62. Gmeiner WH, Jennings-Gee J, Stuart CH, Pardee TS . Thymineless death in F10-treated AML cells occurs via lipid raft depletion and Fas/FasL co-localization in the plasma membrane with activation of the extrinsic apoptotic pathway. Leuk Res 2014; 39: 229–235.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Caroni P . Actin cytoskeleton regulation through modulation of PI(4,5)P2 rafts. EMBO J 2001; 20: 4332–4336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants 2R01 DK074720 and R01HL112788 and the Stella and Henry Endowment to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ratajczak, M., Adamiak, M. Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking. Leukemia 29, 1452–1457 (2015). https://doi.org/10.1038/leu.2015.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.66

This article is cited by

Search

Quick links