Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice

Abstract

CBFβ-SMMHC (core-binding factor β-smooth muscle myosin heavy chain), the fusion protein generated by the chromosome 16 inversion fusion gene, CBFB-MYH11, is known to initiate leukemogenesis. However, the mechanism through which CBFβ-SMMHC contributes to leukemia development is not well understood. Previously, it was proposed that CBFβ-SMMHC acts by dominantly repressing the transcription factor RUNX1 (Runt-related protein 1), but we recently showed that CBFβ-SMMHC has activities that are independent of RUNX1 repression. In addition, we showed that a modified CBFβ-SMMHC with decreased RUNX1-binding activity accelerates leukemogenesis. These results raise questions about the importance of RUNX1 in leukemogenesis by CBFβ-SMMHC. To test this, we generated mice expressing Cbfb-MYH11 in a Runx1-deficient background, resulting from either homozygous Runx1-null alleles (Runx1−/−) or a single dominant-negative Runx1 allele (Runx1+/lz). We found that loss of Runx1 activity rescued the differentiation defects induced by Cbfb-MYH11 during primitive hematopoiesis. During definitive hematopoiesis, RUNX1 loss also significantly reduced the proliferation and differentiation defects induced by Cbfb-MYH11. Importantly, Cbfb-MYH11-induced leukemia had much longer latency in Runx1+/lz mice than in Runx1-sufficient mice. These data indicate that Runx1 activity is critical for Cbfb-MYH11-induced hematopoietic defects and leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    CAS  PubMed  Google Scholar 

  2. Le Beau MM, Larson RA, Bitter MA, Vardiman JW, Golomb HM, Rowley JD . Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med 1983; 309: 630–636.

    Article  CAS  PubMed  Google Scholar 

  3. Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  4. Liu PP, Wijmenga C, Hajra A, Blake TB, Kelley CA, Adelstein RS et al. Identification of the chimeric protein product of the CBFB-MYH11 fusion gene in inv(16) leukemia cells. Genes Chromosomes Cancer 1996; 16: 77–87.

    Article  PubMed  Google Scholar 

  5. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia [letter]. Nat Genet 1999; 23: 144–146.

    Article  CAS  PubMed  Google Scholar 

  6. Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci USA 2004; 101: 4924–4929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chuang LS, Ito K, Ito Y . RUNX family: regulation and diversification of roles through interacting proteins. Int J Cancer 2013; 132: 1260–1271.

    Article  CAS  PubMed  Google Scholar 

  8. Tang YY, Shi J, Zhang L, Davis A, Bravo J, Warren AJ et al. Energetic and functional contribution of residues in the core binding factor beta (CBFbeta ) subunit to heterodimerization with CBFalpha. J Biol Chem 2000; 275: 39579–39588.

    Article  CAS  PubMed  Google Scholar 

  9. Lukasik SM, Zhang L, Corpora T, Tomanicek S, Li Y, Kundu M et al. Altered affinity of CBF beta-SMMHC for Runx1 explains its role in leukemogenesis. Nat Struct Biol 2002; 9: 674–679.

    Article  CAS  PubMed  Google Scholar 

  10. Durst KL, Lutterbach B, Kummalue T, Friedman AD, Hiebert SW . The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 2003; 23: 607–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lutterbach B, Hou Y, Durst KL, Hiebert SW . The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci USA 1999; 96: 12822–12827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adya N, Stacy T, Speck NA, Liu PP . The leukemic protein core binding factor beta (CBFbeta)-smooth-muscle myosin heavy chain sequesters CBFalpha2 into cytoskeletal filaments and aggregates. Mol Cell Biol 1998; 18: 7432–7443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 1996; 87: 687–696.

    Article  CAS  PubMed  Google Scholar 

  14. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    CAS  PubMed  Google Scholar 

  15. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93: 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 1996; 87: 697–708.

    Article  CAS  PubMed  Google Scholar 

  17. Niki M, Okada H, Takano H, Kuno J, Tani K, Hibino H et al. Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor. Proc Natl Acad Sci USA 1997; 94: 5697–5702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sasaki K, Yagi H, Bronson RT, Tominaga K, Matsunashi T, Deguchi K et al. Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. Proc Natl Acad Sci USA 1996; 93: 12359–12363.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hyde RK, Kamikubo Y, Anderson S, Kirby M, Alemu L, Zhao L et al. Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11. Blood 2010; 115: 1433–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamikubo Y, Zhao L, Wunderlich M, Corpora T, Hyde RK, Paul TA et al. Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell 2010; 17: 455–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kamikubo Y, Hyde RK, Zhao L, Alemu L, Rivas C, Garrett LJ et al. The C-terminus of CBFbeta-SMMHC is required to induce embryonic hematopoietic defects and leukemogenesis. Blood 2013; 121: 638–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cunningham L, Finckbeiner S, Hyde RK, Southall N, Marugan J, Yedavalli VR et al. Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction. Proc Natl Acad Sci USA 2012; 109: 14592–14597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 2006; 9: 57–68.

    Article  CAS  PubMed  Google Scholar 

  24. North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 1999; 126: 2563–2575.

    CAS  PubMed  Google Scholar 

  25. Lewandoski M, Meyers EN, Martin GR . Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harb Symp Quant Biol 1997; 62: 159–168.

    Article  CAS  PubMed  Google Scholar 

  26. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider CA, Rasband WS, Eliceiri KW . NIH Image to ImageJ: 25 years of image analysis. Nat methods 2012; 9: 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yokomizo T, Hasegawa K, Ishitobi H, Osato M, Ema M, Ito Y et al. Runx1 is involved in primitive erythropoiesis in the mouse. Blood 2008; 111: 4075–4080.

    Article  CAS  PubMed  Google Scholar 

  29. Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005; 106: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG et al. Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis. Proc Natl Acad Sci USA 1996; 93: 11895–11900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mandoli A, Singh AA, Jansen PW, Wierenga AT, Riahi H, Franci G et al. CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia. Leukemia 2013; 28: 770–778.

    Article  PubMed  Google Scholar 

  32. Ben-Ami O, Friedman D, Leshkowitz D, Goldenberg D, Orlovsky K, Pencovich N et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep 2013; 4: 1131–1143.

    Article  CAS  PubMed  Google Scholar 

  33. Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, Nishimoto N et al. Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest 2013; 123: 3876–3888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009; 114: 5352–5361.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of National Human Genome Research Institute, National Institutes of Health and National Institutes of Health Grant R00CA148963 (RKH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R K Hyde or P P Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyde, R., Zhao, L., Alemu, L. et al. Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knock-in mice. Leukemia 29, 1771–1778 (2015). https://doi.org/10.1038/leu.2015.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.58

This article is cited by

Search

Quick links