Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis

Abstract

Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member ‘B-cell activating factor’ (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL et al. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331: 44–49.

    Article  CAS  Google Scholar 

  2. Ljunggren HG, Malmberg KJ . Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 2007; 7: 329–339.

    Article  CAS  Google Scholar 

  3. Adams GP, Weiner LM . Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23: 1147–1157.

    Article  CAS  Google Scholar 

  4. Keating GM . Rituximab: a review of its use in chronic lymphocytic leukaemia, low-grade or follicular lymphoma and diffuse large B-cell lymphoma. Drugs 2010; 70: 1445–1476.

    Article  CAS  Google Scholar 

  5. Jewell AP, Worman CP, Giles FJ, Goldstone AH, Lydyard PM . Resistance of chronic lymphocytic-leukemia cells to interferon-alpha generated lymphokine activated killer-cells. Leukemia Lymphoma 1992; 7: 473–480.

    Article  CAS  Google Scholar 

  6. Katrinakis G, Kyriakou D, Papadaki H, Kalokyri I, Markidou F, Eliopoulos GD . Defective natural killer cell activity in B-cell chronic lymphocytic leukaemia is associated with impaired release of natural killer cytotoxic factor(s) but not of tumour necrosis factor-alpha. Acta Haematologica 1996; 96: 16–23.

    Article  CAS  Google Scholar 

  7. Kay NE, Zarling JM . Impaired natural killer activity in patients with chronic lymphocytic leukemia is associated with a deficiency of azurophilic cytoplasmic granules in putative NK cells. Blood 1984; 63: 305–309.

    CAS  PubMed  Google Scholar 

  8. Kay NE, Zarling J . Restoration of impaired natural-killer cell-activity of B-chronic lymphocytic-leukemia patients by recombinant interleukin-2. Am J Hematol 1987; 24: 161–167.

    Article  CAS  Google Scholar 

  9. Maki G, Hayes GM, Naji A, Tyler T, Carosella ED, Rouas-Freiss N et al. NK resistance of tumor cells from multiple myeloma and chronic lymphocytic leukemia patients: implication of HLA-G. Leukemia 2008; 22: 998–1006.

    Article  CAS  Google Scholar 

  10. Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: Evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 2005; 105: 2066–2073.

    Article  CAS  Google Scholar 

  11. Platsoucas CD, Fernandes G, Gupta SL, Kempin S, Clarkson B, Good RA et al. Defective spontaneous and antibody-dependent cytotoxicity mediated by E-rosette-positive and E-rosette-negative cells in untreated patients with chronic lymphocytic leukemia: augmentation by in vitro treatment with interferon. J Immunol 1980; 125: 1216–1223.

    CAS  PubMed  Google Scholar 

  12. Spitz DL, Zuckerfranklin D, Nabi ZF . Unmasking of cryptic natural-killer (Nk) cell recognition sites on chronic lymphocytic-leukemia lymphocytes. Am J Hematol 1988; 28: 155–161.

    Article  CAS  Google Scholar 

  13. Veuillen C, Aurran-Schleinitz T, Castellano R, Rey J, Mallet F, Orlanducci F et al. Primary B-CLL resistance to NK cell cytotoxicity can be overcome in vitro and in vivo by priming NK cells and monoclonal antibody therapy. J Clin Immunol 2012; 32: 632–646.

    Article  CAS  Google Scholar 

  14. Ziegler HW, Kay NE, Zarling JM . Deficiency of natural killer cell activity in patients with chronic lymphocytic leukemia. Int J Cancer 1981; 27: 321–327.

    Article  CAS  Google Scholar 

  15. Jaglowski SM, Alinari L, Lapalombella R, Muthusamy N, Byrd JC . The clinical application of monoclonal antibodies in chronic lymphocytic leukemia. Blood 2010; 116: 3705–3714.

    Article  CAS  Google Scholar 

  16. Mackay F, Schneider P . Cracking the BAFF code. Nat Rev Immunol 2009; 9: 491–502.

    Article  CAS  Google Scholar 

  17. Dillon SR, Gross JA, Ansell SM, Novak AJ . An APRIL to remember: novel TNF ligands as therapeutic targets. Nat Rev Drug Discov 2006; 5: 235–246.

    Article  CAS  Google Scholar 

  18. Espinosa C, Cervera R . Belimumab, a Blys-specific inhibitor for the treatment of systemic lupus erythematosus. Drugs Today 2010; 46: 891–899.

    Article  CAS  Google Scholar 

  19. Kamal A . The efficacy of novel B cell biologics as the future of SLE treatment: A review. Autoimmun Rev 2014; 13: 1094–1101.

    Article  CAS  Google Scholar 

  20. Endo T, Nishio M, Enzler T, Cottam HB, Fukuda T, James DF et al. BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway. Blood 2007; 109: 703–710.

    Article  CAS  Google Scholar 

  21. He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A . Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 2004; 172: 3268–3279.

    Article  CAS  Google Scholar 

  22. Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V et al. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 2004; 103: 679–688.

    Article  CAS  Google Scholar 

  23. Novak AJ, Bram RJ, Kay NE, Jelinek DF . Aberrant expression of B-lymphocyte stimulator by B chronic lymphocytic leukemia cells: a mechanism for survival. Blood 2002; 100: 2973–2979.

    Article  CAS  Google Scholar 

  24. Parameswaran R, Muschen M, Kim YM, Groffen J, Heisterkamp N . A functional receptor for B-cell-activating factor is expressed on human acute lymphoblastic leukemias. Cancer Res 2010; 70: 4346–4356.

    Article  CAS  Google Scholar 

  25. Maia S, Pelletier M, Ding JX, Hsu YM, Sallan SE, Rao SP et al. Aberrant expression of functional BAFF-system receptors by malignant B-cell precursors impacts leukemia cell survival. Plos One 2011; 6: e20787.

    Article  CAS  Google Scholar 

  26. Imai C, Iwamoto S, Campana D . Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005; 106: 376–383.

    Article  CAS  Google Scholar 

  27. Schneider P, Mackay F, Steiner V, Hofmann K, Bodmer JL, Holler N et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999; 189: 1747–1756.

    Article  CAS  Google Scholar 

  28. Schmiedel BJ, Arelin V, Gruenebach F, Krusch M, Schmidt SM, Salih HR . Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int J Cancer 2011; 128: 2911–2922.

    Article  CAS  Google Scholar 

  29. Buechele C, Baessler T, Schmiedel BJ, Schumacher CE, Grosse-Hovest L, Rittig K et al. 4-1BB ligand modulates direct and Rituximab-induced NK-cell reactivity in chronic lymphocytic leukemia. Eur J Immunol 2012; 42: 737–748.

    Article  CAS  Google Scholar 

  30. Baessler T, Krusch M, Schmiedel BJ, Kloss M, Baltz KM, Wacker A et al. Glucocorticoid-induced tumor necrosis factor receptor-related protein ligand subverts immunosurveillance of acute myeloid leukemia in humans. Cancer Res 2009; 69: 1037–1045.

    Article  CAS  Google Scholar 

  31. Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M et al. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 2015; 29: 647–659.

    Article  CAS  Google Scholar 

  32. Suzuki K, Setoyama Y, Yoshimoto K, Tsuzaka K, Abe T, Takeuchi T . Effect of interleukin-2 on synthesis of B cell activating factor belonging to the tumor necrosis factor family (BAFF) in human peripheral blood mononuclear cells. Cytokine 2008; 44: 44–48.

    Article  CAS  Google Scholar 

  33. Lopez-Fraga M, Fernandez R, Albar JP, Hahne M . Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase. EMBO R 2001; 2: 945–951.

    Article  CAS  Google Scholar 

  34. Bologna L, Gotti E, Da Roit F, Intermesoli T, Rambaldi A, Introna M et al. Ofatumumab is more efficient than rituximab in lysing B chronic lymphocytic leukemia cells in whole blood and in combination with chemotherapy. J Immunol 2013; 190: 231–239.

    Article  CAS  Google Scholar 

  35. Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T et al. Preclinical activity of the type II CD20 antibody GA101 (Obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther 2013; 12: 2031–2042.

    Article  CAS  Google Scholar 

  36. Kuster B, Schirle M, Mallick P, Aebersold R . Scoring proteomes with proteotypic peptide probes. Nat Rev Mol Cell Biol 2005; 6: 577–583.

    Article  CAS  Google Scholar 

  37. Hilpert J, Grosse-Hovest L, Grunebach F, Buechele C, Nuebling T, Raum T et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses. J Immunol 2012; 189: 1360–1371.

    Article  CAS  Google Scholar 

  38. Reiners KS, Topolar D, Henke A, Simhadri VR, Kessler J, Sauer M et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 2013; 121: 3658–3665.

    Article  CAS  Google Scholar 

  39. Buechele C, Baessler T, Wirths S, Schmohl JU, Schmiedel BJ, Salih HR . Glucocorticoid-induced TNFR-related protein (GITR) ligand modulates cytokine release and NK cell reactivity in chronic lymphocytic leukemia (CLL). Leukemia 2011; 26: 991–1000.

    Article  Google Scholar 

  40. Scapini P, Nardelli B, Nadali G, Calzetti F, Pizzolo G, Montecucco C et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 2003; 197: 297–302.

    Article  CAS  Google Scholar 

  41. Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, Orban PC et al. Human CD25+CD4+ T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells. J Exp Med 2002; 196: 1335–1346.

    Article  CAS  Google Scholar 

  42. Tuyaerts S, Van Meirvenne S, Bonehill A, Heirman C, Corthals J, Waldmann H et al. Expression of human GITRL on myeloid dendritic cells enhances their immunostimulatory function but does not abrogate the suppressive effect of CD4+CD25+ regulatory T cells. J Leukoc Biol 2007; 82: 93–105.

    Article  CAS  Google Scholar 

  43. Liu B, Li Z, Mahesh SP, Pantanelli S, Hwang FS, Siu WO et al. GITR negatively regulates activation of primary human NK cells by blocking proliferative signals and increasing NK cell apoptosis. J Biol Chem 2008; 283: 8202–8210.

    Article  CAS  Google Scholar 

  44. Baessler T, Charton JE, Schmiedel BJ, Grunebach F, Krusch M, Wacker A et al. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood 2010; 115: 3058–3069.

    Article  CAS  Google Scholar 

  45. Bruhns P . Properties of mouse and human IgG receptors and their contribution to disease models. Blood 2012; 119: 5640–5649.

    Article  CAS  Google Scholar 

  46. Nimmerjahn F, Ravetch JV . Fc gamma receptors as regulators of immune responses. Nat Rev Immunol 2008; 8: 34–47.

    Article  CAS  Google Scholar 

  47. De Vita S, Quartuccio L, Salvin S, Picco L, Scott CA, Rupolo M et al. Sequential therapy with belimumab followed by rituximab in Sjogren's syndrome associated with B-cell lymphoproliferation and overexpression of BAFF: evidence for long-term efficacy. Clin Exp Rheumatol 2014; 32: 490–494.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft (SA1360/7-1, SA1360/9-1, and SFB-685), Wilhelm Sander-Stiftung (2007.115.3) and Deutsche Krebshilfe (109620). PS is supported by grants of the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H R Salih.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wild, J., Schmiedel, B., Maurer, A. et al. Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis. Leukemia 29, 1676–1683 (2015). https://doi.org/10.1038/leu.2015.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.50

This article is cited by

Search

Quick links