Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma

Abstract

Angiogenesis associates with poor outcome in diffuse large B-cell lymphoma (DLBCL), but the contribution of the lymphoma cells to this process remains unclear. Addressing this knowledge gap may uncover unsuspecting proangiogenic signaling nodes and highlight alternative antiangiogenic therapies. Here, we identify the second messenger cyclic-AMP (cAMP) and the enzyme that terminates its activity, phosphodiesterase 4B (PDE4B), as regulators of B-cell lymphoma angiogenesis. We first show that cAMP, in a PDE4B-dependent manner, suppresses PI3K/AKT signals to downmodulate vascular endothelial growth factor (VEGF) secretion and vessel formation in vitro. Next, we create a novel mouse model that combines the lymphomagenic Myc transgene with germline deletion of Pde4b. We show that lymphomas developing in a Pde4b-null background display significantly lower microvessel density (MVD) in association with lower VEGF levels and PI3K/AKT activity. We recapitulate these observations by treating lymphoma-bearing mice with the FDA-approved PDE4 inhibitor, Roflumilast. Lastly, we show that primary human DLBCLs with high PDE4B expression display significantly higher MVD. Here, we defined an unsuspected signaling circuitry in which the cAMP generated in lymphoma cells downmodulates PI3K/AKT and VEGF secretion to negatively influence vessel development in the microenvironment. These data identify PDE4 as an actionable antiangiogenic target in DLBCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Welti J, Loges S, Dimmeler S, Carmeliet P . Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 2013; 123: 3190–3200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jain RK . Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014; 26: 605–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sehn LH, Gascoyne RD . Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood 2015; 125: 22–32.

    Article  CAS  PubMed  Google Scholar 

  4. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  5. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    Article  CAS  PubMed  Google Scholar 

  6. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 2005; 105: 1851–1861.

    Article  CAS  PubMed  Google Scholar 

  7. Pasqualucci L . The genetic basis of diffuse large B-cell lymphoma. Curr Opin Hematol 2013; 20: 336–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weinstock DM, Dalla-Favera R, Gascoyne RD, Leonard JP, Levy R, Lossos IS et al. A roadmap for discovery and translation in lymphoma. Blood 2015; 125: 2175–2177.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Salven P, Orpana A, Teerenhovi L, Joensuu H . Simultaneous elevation in the serum concentrations of the angiogenic growth factors VEGF and bFGF is an independent predictor of poor prognosis in non-Hodgkin lymphoma: a single-institution study of 200 patients. Blood 2000; 96: 3712–3718.

    CAS  PubMed  Google Scholar 

  10. Gratzinger D, Zhao S, Tibshirani RJ, Hsi ED, Hans CP, Pohlman B et al. Prognostic significance of VEGF, VEGF receptors, and microvessel density in diffuse large B cell lymphoma treated with anthracycline-based chemotherapy. Lab Invest 2008; 88: 38–47.

    Article  CAS  PubMed  Google Scholar 

  11. Cardesa-Salzmann TM, Colomo L, Gutierrez G, Chan WC, Weisenburger D, Climent F et al. High microvessel density determines a poor outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus chemotherapy. Haematologica 2011; 96: 996–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liapis K, Clear A, Owen A, Coutinho R, Greaves P, Lee AM et al. The microenvironment of AIDS-related diffuse large B-cell lymphoma provides insight into the pathophysiology and indicates possible therapeutic strategies. Blood 2013; 122: 424–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Seymour JF, Pfreundschuh M, Trneny M, Sehn LH, Catalano J, Csinady E et al. R-CHOP with or without bevacizumab in patients with previously untreated diffuse large B-cell lymphoma: final MAIN study outcomes. Haematologica 2014; 99: 1343–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stopeck AT, Unger JM, Rimsza LM, LeBlanc M, Farnsworth B, Iannone M et al. A phase 2 trial of standard-dose cyclophosphamide, doxorubicin, vincristine, prednisone (CHOP) and rituximab plus bevacizumab for patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: SWOG 0515. Blood 2012; 120: 1210–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mosenden R, Tasken K . Cyclic AMP-mediated immune regulation—overview of mechanisms of action in T cells. Cell Signal 2011; 23: 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  16. Levy FO, Rasmussen AM, Tasken K, Skalhegg BS, Huitfeldt HS, Funderud S et al. Cyclic AMP-dependent protein kinase (cAK) in human B cells: co-localization of type I cAK (RI alpha 2 C2) with the antigen receptor during anti-immunoglobulin-induced B cell activation. Eur J Immunol 1996; 26: 1290–1296.

    Article  CAS  PubMed  Google Scholar 

  17. Kim SW, Rai D, McKeller MR, Aguiar RC . Rational combined targeting of phosphodiesterase 4B and SYK in DLBCL. Blood 2009; 113: 6153–6160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Smith PG, Wang F, Wilkinson KN, Savage KJ, Klein U, Neuberg DS et al. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood 2005; 105: 308–316.

    Article  CAS  PubMed  Google Scholar 

  19. Serezani CH, Ballinger MN, Aronoff DM, Peters-Golden M . Cyclic AMP: master regulator of innate immune cell function. Am J Respir Cell Mol Biol 2008; 39: 127–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C . Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem 2003; 278: 5493–5496.

    Article  CAS  PubMed  Google Scholar 

  21. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  22. Kim SW, Rai D, Aguiar RC . Gene set enrichment analysis unveils the mechanism for the phosphodiesterase 4B control of glucocorticoid response in B-cell lymphoma. Clin Cancer Res 2011; 17: 6723–6732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mendes JB, Rocha MA, Araujo FA, Moura SA, Ferreira MA, Andrade SP . Differential effects of rolipram on chronic subcutaneous inflammatory angiogenesis and on peritoneal adhesion in mice. Microvasc Res 2009; 78: 265–271.

    Article  CAS  PubMed  Google Scholar 

  24. Favot L, Keravis T, Holl V, Le Bec A, Lugnier C . VEGF-induced HUVEC migration and proliferation are decreased by PDE2 and PDE4 inhibitors. Thromb Haemost 2003; 90: 334–343.

    Article  CAS  PubMed  Google Scholar 

  25. Jin H, Garmy-Susini B, Avraamides CJ, Stoletov K, Klemke RL, Varner JA . A PKA-Csk-pp60Src signaling pathway regulates the switch between endothelial cell invasion and cell-cell adhesion during vascular sprouting. Blood 2010; 116: 5773–5783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim S, Bakre M, Yin H, Varner JA . Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest 2002; 110: 933–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin AP, Abbas S, Kim SW, Ortega M, Bouamar H, Escobedo Y et al. D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nat Commun 2015; 6: 7768.

    Article  CAS  PubMed  Google Scholar 

  28. Jin SL, Conti M . Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses. Proc Natl Acad Sci USA 2002; 99: 7628–7633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung I, Aguiar RC . MicroRNA-155 expression and outcome in diffuse large B-cell lymphoma. Br J Haematol 2009; 144: 138–140.

    Article  PubMed  Google Scholar 

  30. Bouamar H, Jiang D, Wang L, Lin AP, Ortega M, Aguiar RC . MicroRNA 155 Control of p53 Activity Is Context Dependent and Mediated by Aicda and Socs1. Mol Cell Biol 2015; 35: 1329–1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mizukami Y, Kohgo Y, Chung DC . Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 2007; 13: 5670–5674.

    Article  CAS  PubMed  Google Scholar 

  32. Kotani A, Kakazu N, Tsuruyama T, Okazaki IM, Muramatsu M, Kinoshita K et al. Activation-induced cytidine deaminase (AID) promotes B cell lymphomagenesis in Emu-cmyc transgenic mice. Proc Natl Acad Sci USA 2007; 104: 1616–1620.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schuster C, Berger A, Hoelzl MA, Putz EM, Frenzel A, Simma O et al. The cooperating mutation or "second hit" determines the immunologic visibility toward MYC-induced murine lymphomas. Blood 2011; 118: 4635–4645.

    Article  CAS  PubMed  Google Scholar 

  34. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C et al. Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 2005; 436: 807–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmitt CA, Rosenthal CT, Lowe SW . Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 2000; 6: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  36. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004; 428: 332–337.

    Article  CAS  PubMed  Google Scholar 

  37. Nilsson JA, Keller UB, Baudino TA, Yang C, Norton S, Old JA et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 2005; 7: 433–444.

    Article  CAS  PubMed  Google Scholar 

  38. Wall M, Poortinga G, Stanley KL, Lindemann RK, Bots M, Chan CJ et al. The mTORC1 inhibitor everolimus prevents and treats Emu-Myc lymphoma by restoring oncogene-induced senescence. Cancer Discov 2013; 3: 82–95.

    Article  CAS  PubMed  Google Scholar 

  39. Bouamar H, Abbas S, Lin AP, Wang L, Jiang D, Holder KN et al. A capture-sequencing strategy identifies IRF8, EBF1, and APRIL as novel IGH fusion partners in B-cell lymphoma. Blood 2013; 122: 726–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li C, Kim SW, Rai D, Bolla AR, Adhvaryu S, Kinney MC et al. Copy number abnormalities, MYC activity, and the genetic fingerprint of normal B cells mechanistically define the microRNA profile of diffuse large B-cell lymphoma. Blood 2009; 113: 6681–6690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gratzinger D, Zhao S, Marinelli RJ, Kapp AV, Tibshirani RJ, Hammer AS et al. Microvessel density and expression of vascular endothelial growth factor and its receptors in diffuse large B-cell lymphoma subtypes. Am J Pathol 2007; 170: 1362–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Norrby K, Ridell B . Tumour-type-specific capillary endothelial cell stainability in malignant B-cell lymphomas using antibodies against CD31, CD34 and Factor VIII. APMIS 2003; 111: 483–489.

    Article  PubMed  Google Scholar 

  43. Gantner F, Gotz C, Gekeler V, Schudt C, Wendel A, Hatzelmann A . Phosphodiesterase profile of human B lymphocytes from normal and atopic donors and the effects of PDE inhibition on B cell proliferation. Br J Pharmacol 1998; 123: 1031–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsunoda T, Ota T, Fujimoto T, Doi K, Tanaka Y, Yoshida Y et al. Inhibition of phosphodiesterase-4 (PDE4) activity triggers luminal apoptosis and AKT dephosphorylation in a 3-D colonic-crypt model. Mol Cancer 2012; 11: 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sengupta R, Sun T, Warrington NM, Rubin JB . Treating brain tumors with PDE4 inhibitors. Trends Pharmacol Sci 2011; 32: 337–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang P, Wu P, Ohleth KM, Egan RW, Billah MM . Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol Pharmacol 1999; 56: 170–174.

    Article  CAS  PubMed  Google Scholar 

  47. Pullamsetti SS, Banat GA, Schmall A, Szibor M, Pomagruk D, Hanze J et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene 2013; 32: 1121–1134.

    Article  CAS  PubMed  Google Scholar 

  48. Yang Q, Modi P, Newcomb T, Queva C, Gandhi V . Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res 2015; 21: 1537–1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Cancer Therapy and Research Center at UTHSCSA Core Pathology Tissue Bank for procurement of the primary DLBCL samples. We acknowledge Patricia Dahia for insightful suggestions during the execution of this project. This work was supported by CPRIT awards RP110200 and RP150277 (to RCTA), a grant from the William and Ella Owens Medical Research Foundation (to RCTA), and a Cancer Center support grant P30 CA054174.

Author contributions

ANS designed and conducted experiments, and analyzed the data; LW conducted animal experiments; A-PL conducted experiments, HB performed animal husbandry; S-WK conducted experiments; AM and KH performed pathological analyses; RCTA designed and coordinated the study, analyzed data and wrote the manuscript, which was reviewed by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R C T Aguiar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhasini, A., Wang, L., Holder, K. et al. A phosphodiesterase 4B-dependent interplay between tumor cells and the microenvironment regulates angiogenesis in B-cell lymphoma. Leukemia 30, 617–626 (2016). https://doi.org/10.1038/leu.2015.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.302

This article is cited by

Search

Quick links