Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukaemia cells through downregulation of Mcl-1

Abstract

The pro-survival Bcl-2 family member Mcl-1 is expressed in chronic lymphocytic leukaemia (CLL), with high expression correlated with progressive disease. The spliceosome inhibitor spliceostatin A (SSA) is known to regulate Mcl-1 and so here we assessed the ability of SSA to elicit apoptosis in CLL. SSA induced apoptosis of CLL cells at low nanomolar concentrations in a dose- and time-dependent manner, but independently of SF3B1 mutational status, IGHV status and CD38 or ZAP70 expression. However, normal B and T cells were less sensitive than CLL cells (P=0.006 and P<0.001, respectively). SSA altered the splicing of anti-apoptotic MCL-1L to MCL-1s in CLL cells coincident with induction of apoptosis. Overexpression studies in Ramos cells suggested that Mcl-1 was important for SSA-induced killing since its expression inversely correlated with apoptosis (P=0.001). IL4 and CD40L, present in patient lymph nodes, are known to protect tumour cells from apoptosis and significantly inhibited SSA, ABT-263 and ABT-199 induced killing following administration to CLL cells (P=0.008). However, by combining SSA with the Bcl-2/Bcl-xL antagonists ABT-263 or ABT-199, we were able to overcome this pro-survival effect. We conclude that SSA combined with Bcl-2/Bcl-xL antagonists may have therapeutic utility for CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kay NE, O'Brien SM, Pettitt AR, Stilgenbauer S . The role of prognostic factors in assessing 'high-risk' subgroups of patients with chronic lymphocytic leukemia. Leukemia 2007; 21: 1885–1891.

    Article  CAS  PubMed  Google Scholar 

  2. Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 4473–4479.

    Article  PubMed  Google Scholar 

  3. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121: 1403–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oscier DG, Rose-Zerilli MJ, Winkelmann N, Gonzalez de Castro D, Gomez B, Forster J et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013; 121: 468–475.

    Article  CAS  PubMed  Google Scholar 

  9. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2012; 44: 47–52.

    Article  CAS  Google Scholar 

  10. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kramer A . The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 1996; 65: 367–409.

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira PG, Jares P, Rico D, Gomez-Lopez G, Martinez-Trillos A, Villamor N et al. Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res 2014; 24: 212–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kotake Y, Sagane K, Owa T, Mimori-Kiyosue Y, Shimizu H, Uesugi M et al. Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 2007; 3: 570–575.

    Article  CAS  PubMed  Google Scholar 

  14. Albert BJ, Sivaramakrishnan A, Naka T, Czaicki NL, Koide K . Total syntheses, fragmentation studies, and antitumor/antiproliferative activities of FR901464 and its low picomolar analogue. J Am Chem Soc 2007; 129: 2648–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao Y, Vogt A, Forsyth CJ, Koide K . Comparison of splicing factor 3b inhibitors in human cells. Chembiochem 2013; 14: 49–52.

    Article  CAS  PubMed  Google Scholar 

  16. Kaida D, Motoyoshi H, Tashiro E, Nojima T, Hagiwara M, Ishigami K et al. Spliceostatin A targets SF3b and inhibits both splicing and nuclear retention of pre-mRNA. Nat Chem Biol 2007; 3: 576–583.

    Article  CAS  PubMed  Google Scholar 

  17. Albert BJ, McPherson PA, O'Brien K, Czaicki NL, Destefino V, Osman S et al. Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol Cancer Ther 2009; 8: 2308–2318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao Y, Koide K . Chemical perturbation of Mcl-1 pre-mRNA splicing to induce apoptosis in cancer cells. ACS Chem Biol 2013; 8: 895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakajima H, Sato B, Fujita T, Takase S, Terano H, Okuhara M . New antitumor substances, FR901463, FR901464 and FR901465. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 1996; 49: 1196–1203.

    Article  CAS  Google Scholar 

  20. Osman S, Albert BJ, Wang Y, Li M, Czaicki NL, Koide K . Structural requirements for the antiproliferative activity of pre-mRNA splicing inhibitor FR901464. Chemistry 2011; 17: 895–904.

    Article  CAS  PubMed  Google Scholar 

  21. Furumai R, Uchida K, Komi Y, Yoneyama M, Ishigami K, Watanabe H et al. Spliceostatin A blocks angiogenesis by inhibiting global gene expression including VEGF. Cancer Sci 2010; 101: 2483–2489.

    Article  CAS  PubMed  Google Scholar 

  22. Laetsch TW, Liu X, Vu A, Sliozberg M, Vido M, Elci OU et al. Multiple components of the spliceosome regulate Mcl1 activity in neuroblastoma. Cell Death Dis 2014; 5: e1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pepper C, Lin TT, Pratt G, Hewamana S, Brennan P, Hiller L et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008; 112: 3807–3817.

    Article  CAS  PubMed  Google Scholar 

  24. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 2007; 109: 1660–1668.

    Article  CAS  PubMed  Google Scholar 

  25. Thijssen R, Slinger E, Weller K, Geest CR, Beaumont T, van Oers MH et al. Resistance to ABT-199 induced by microenvironmental signals in chronic lymphocytic leukemia can be counteracted by CD20 antibodies or kinase inhibitors. Haematologica 2015; 100: e302–e306.

    PubMed  PubMed Central  Google Scholar 

  26. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2012; 30: 488–496.

    Article  CAS  PubMed  Google Scholar 

  27. Mazumder S, Choudhary GS, Al-Harbi S, Almasan A . Mcl-1 Phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells. Cancer Res 2012; 72: 3069–3079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Al-Harbi S, Hill BT, Mazumder S, Singh K, Devecchio J, Choudhary G et al. An antiapoptotic BCL-2 family expression index predicts the response of chronic lymphocytic leukemia to ABT-737. Blood 2011; 118: 3579–3590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yecies D, Carlson NE, Deng J, Letai A . Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood 2010; 115: 3304–3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Brien SM, Claxton DF, Crump M, Faderl S, Kipps T, Keating MJ et al. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood 2009; 113: 299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castro JE, Olivier LJ, Robier AA, Danelle J, Carlos SJ, Bi-Ying Y et al. A phase II, open label study of AT-101 in combination with rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood 2006; 108: 803A.

    Google Scholar 

  32. Castro JE, Loria OJ, Aguillon RA, James D, Llanos CA, Rassenti L et al. A phase II, open label study of AT-101 in combination with rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Evaluation of two dose regimens. Blood 2007; 110: 917A–918A.

    Google Scholar 

  33. Mockridge CI, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK . Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood 2007; 109: 4424–4431.

    Article  CAS  PubMed  Google Scholar 

  34. Steele AJ, Prentice AG, Hoffbrand AV, Yogashangary BC, Hart SM, Lowdell MW et al. 2-Phenylacetylenesulfonamide (PAS) induces p53-independent apoptotic killing of B-chronic lymphocytic leukemia (CLL) cells. Blood 2009; 114: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  35. Steele AJ, Prentice AG, Hoffbrand AV, Yogashangary BC, Hart SM, Nacheva EP et al. p53-mediated apoptosis of CLL cells: evidence for a transcription-independent mechanism. Blood 2008; 112: 3827–3834.

    Article  CAS  PubMed  Google Scholar 

  36. Steele AJ, Prentice AG, Cwynarski K, Hoffbrand AV, Hart SM, Lowdell MW et al. The JAK3-selective inhibitor PF-956980 reverses the resistance to cytotoxic agents induced by interleukin-4 treatment of chronic lymphocytic leukemia cells: potential for reversal of cytoprotection by the microenvironment. Blood 2010; 116: 4569–4577.

    Article  CAS  PubMed  Google Scholar 

  37. Tonino SH, van Gelder M, Eldering E, van Oers MH, Kater AP . R-DHAP is effective in fludarabine-refractory chronic lymphocytic leukemia. Leukemia 2010; 24: 652–654.

    Article  CAS  PubMed  Google Scholar 

  38. Chen R, Guo L, Chen Y, Jiang Y, Wierda WG, Plunkett W . Homoharringtonine reduced Mcl-1 expression and induced apoptosis in chronic lymphocytic leukemia. Blood 2011; 117: 156–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moore MJ, Wang Q, Kennedy CJ, Silver PA . An alternative splicing network links cell-cycle control to apoptosis. Cell 2010; 142: 625–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang W, Trachootham D, Liu J, Chen G, Pelicano H, Garcia-Prieto C et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 2012; 14: 276–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grdisa M . Influence of CD40 ligation on survival and apoptosis of B-CLL cells in vitro. Leuk Res 2003; 27: 951–956.

    Article  CAS  PubMed  Google Scholar 

  42. Hayden RE, Pratt G, Roberts C, Drayson MT, Bunce CM . Treatment of chronic lymphocytic leukemia requires targeting of the protective lymph node environment with novel therapeutic approaches. Leuk Lymphoma 2012; 53: 537–549.

    Article  CAS  PubMed  Google Scholar 

  43. Patten PE, Buggins AG, Richards J, Wotherspoon A, Salisbury J, Mufti GJ et al. CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment. Blood 2008; 111: 5173–5181.

    Article  CAS  PubMed  Google Scholar 

  44. Tromp JM, Geest CR, Breij EC, Elias JA, van Laar J, Luijks DM et al. Tipping the Noxa/Mcl-1 balance overcomes ABT-737 resistance in chronic lymphocytic leukemia. Clin Cancer Res 2012; 18: 487–498.

    Article  CAS  PubMed  Google Scholar 

  45. Scarfo L, Ghia P . Reprogramming cell death: BCL2 family inhibition in hematological malignancies. Immunol Lett 2013; 155: 36–39.

    Article  CAS  PubMed  Google Scholar 

  46. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  47. Anderson MA, Huang DC, Roberts AW . BH3 mimetic therapy: an emerging and promising approach to treating chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54: 909–911.

    Article  PubMed  Google Scholar 

  48. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 2007; 315: 856–859.

    Article  CAS  PubMed  Google Scholar 

  49. Dzhagalov I, Dunkle A, He YW . The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J Immunol 2008; 181: 521–528.

    Article  CAS  PubMed  Google Scholar 

  50. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152: 714–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Te Raa GD, Derks IA, Navrkalova V, Skowronska A, Moerland PD, van Laar J et al. The impact of SF3B1 mutations in CLL on the DNA damage response. Leukemia 2014; 29: 1133–1142.

    Article  PubMed  Google Scholar 

  52. Corrionero A, Minana B, Valcarcel J . Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A. Genes Dev 2011; 25: 445–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bae J, Leo CP, Hsu SY, Hsueh AJ . MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 2000; 275: 25255–25261.

    Article  CAS  PubMed  Google Scholar 

  54. Gao Y, Trivedi S, Ferris RL, Koide K . Regulation of HPV16 E6 and MCL1 by SF3B1 inhibitor in head and neck cancer cells. Sci Rep 2014; 4: 6098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  PubMed  Google Scholar 

  56. Cragg MS, Harris C, Strasser A, Scott CL . Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 2009; 9: 321–326.

    Article  CAS  PubMed  Google Scholar 

  57. Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJ et al. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 2009; 113: 4403–4413.

    Article  CAS  PubMed  Google Scholar 

  58. Nakajima H, Hori Y, Terano H, Okuhara M, Manda T, Matsumoto S et al. New antitumor substances, FR901463, FR901464 and FR901465. II. Activities against experimental tumors in mice and mechanism of action. J Antibiot (Tokyo) 1996; 49: 1204–1211.

    Article  CAS  Google Scholar 

  59. Osman S, Waud WR, Gorman GS, Day BW, Koide K . Evaluation of FR901464 analogues in vitro and in vivo. MedChemComm 2011; 2: 38–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Leukaemia and Lymphoma Research (12036, 12021), for supporting this work, the patients for supplying tissue and the infrastructure support from a CR-UK centre grant (C34999/A18087). We thank Astellas Pharmaceuticals for supplying FR901464 for SSA synthesis by Professor Yoshida, and Dr Duriez, Mr Tracy and Mrs Henderson for technical support (LLR grant 12021, ECMC C24563/A15581). The synthesis of meayamycin B was supported by the US National Institutes of Health (R01 CA120792) to Professor Koide.

Author contributions

ML, MY, MSC, JCS and AJS designed and analysed experiments and wrote the manuscript. ML, SJB, RD, MJJR and MDB performed experimental work. MY and KK synthesized SSA and meayamycin B, respectively. FF, RW, AD and DO obtained patient consent and analysed clinical data. DO, MY, KK and GP provided critical review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Steele.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larrayoz, M., Blakemore, S., Dobson, R. et al. The SF3B1 inhibitor spliceostatin A (SSA) elicits apoptosis in chronic lymphocytic leukaemia cells through downregulation of Mcl-1. Leukemia 30, 351–360 (2016). https://doi.org/10.1038/leu.2015.286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.286

This article is cited by

Search

Quick links