Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Skoda RC, Duek A, Grisouard J . Pathogenesis of myeloproliferative neoplasms. Exp Hematol 2015; 43: 599–608.

    Article  CAS  PubMed  Google Scholar 

  2. Sangkhae V, Etheridge SL, Kaushansky K, Hitchcock IS . The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. Blood 2014; 124: 3956–3963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Staerk J, Lacout C, Sato T, Smith SO, Vainchenker W, Constantinescu SN . An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 2006; 107: 1864–1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Defour JP, Itaya M, Gryshkova V, Brett IC, Pecquet C, Sato T et al. Tryptophan at the transmembrane-cytosolic junction modulates thrombopoietin receptor dimerization and activation. Proc Natl Acad Sci USA 2013; 110: 2540–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abe M, Suzuki K, Inagaki O, Sassa S, Shikama H . A novel MPL point mutation resulting in thrombopoietin-independent activation. Leukemia 2002; 16: 1500–1506.

    Article  CAS  PubMed  Google Scholar 

  6. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  PubMed  Google Scholar 

  8. Pecquet C, Staerk J, Chaligne R, Goss V, Lee KA, Zhang X et al. Induction of myeloproliferative disorder and myelofibrosis by thrombopoietin receptor W515 mutants is mediated by cytosolic tyrosine 112 of the receptor. Blood 2010; 115: 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  9. Boyd EM, Bench AJ, Goday-Fernandez A, Anand S, Vaghela KJ, Beer P et al. Clinical utility of routine MPL exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. Br J Haematol 2010; 149: 250–257.

    Article  CAS  PubMed  Google Scholar 

  10. Ma W, Zhang X, Wang X, Zhang Z, Yeh CH, Uyeji J et al. MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders. Diagn Mol Pathol 2011; 20: 34–39.

    Article  PubMed  Google Scholar 

  11. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008; 112: 141–149.

    Article  CAS  PubMed  Google Scholar 

  12. Pardanani A, Guglielmelli P, Lasho TL, Pancrazzi A, Finke CM, Vannucchi AM et al. Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients. Leukemia 2011; 25: 1834–1839.

    Article  CAS  PubMed  Google Scholar 

  13. Ding J, Komatsu H, Wakita A, Kato-Uranishi M, Ito M, Satoh et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood 2004; 103: 4198–4200.

    Article  CAS  PubMed  Google Scholar 

  14. Venancio TM, Aravind L . CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. Bioinformatics 2010; 26: 149–152.

    Article  CAS  PubMed  Google Scholar 

  15. Heitmann P . A model for sulfhydryl groups in proteins. Hydrophobic interactions of the cystein side chain in micelles. Eur J Biochem 1968; 3: 346–350.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Steven O. Smith for structural biology insights and Nicolas Dauguet for expert cell sorting. We are grateful for generous support to SNC from the Ludwig Institute for Cancer Research, FRS-FNRS, Salus Sanguinis Foundation, the Action de Recherche Concertée project ARC10/15–027 of the University catholique de Louvain, the Fondation contre le Cancer, the PAI Programs BCHM61B5 and Belgian Medical Genetics Initiative (BeMG), Belgium. JPD and IC were supported by FRIA and Télévie-FRS-FNRS PhD fellowships, Belgium. JPD was also supported by the Cliniques universitaires St Luc, Brussels, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Constantinescu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defour, JP., Chachoua, I., Pecquet, C. et al. Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms. Leukemia 30, 1214–1216 (2016). https://doi.org/10.1038/leu.2015.271

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.271

This article is cited by

Search

Quick links