Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Adoptive B-cell transfer mouse model of human myeloma

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  Google Scholar 

  2. Morgan GJ, Walker BA, Davies FE . The genetic architecture of multiple myeloma. Nat Rev Cancer 2012; 12: 335–348.

    Article  CAS  Google Scholar 

  3. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  Google Scholar 

  4. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014; 25: 91–101.

    Article  CAS  Google Scholar 

  5. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP et al. BRAF mutations in hairy-cell leukemia. The N Engl J Med 2011; 364: 2305–2315.

    Article  CAS  Google Scholar 

  6. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med 2012; 367: 826–833.

    Article  CAS  Google Scholar 

  7. Heyer J, Kwong LN, Lowe SW, Chin L . Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 2010; 10: 470–480.

    Article  CAS  Google Scholar 

  8. Rosean TR, Tompkins VS, Olivier AK, Sompallae R, Norian LA, Morse HC 3rd et al. The tumor microenvironment is the main source of IL-6 for plasma cell tumor development in mice. Leukemia 2014; 29: 233–237.

    Article  Google Scholar 

  9. Silva S, Kovalchuk AL, Kim JS, Klein G, Janz S . BCL2 accelerates inflammation-induced BALB/c plasmacytomas and promotes novel tumors with coexisting T(12;15) and T(6;15) translocations. Cancer Res 2003; 63: 8656–8663.

    CAS  Google Scholar 

  10. Kovalchuk AL, Kim JS, Park SS, Coleman AE, Ward JM, Morse HC 3rd et al. IL-6 transgenic mouse model for extraosseous plasmacytoma. Proc Natl Acad Sci USA 2002; 99: 1509–1514.

    Article  CAS  Google Scholar 

  11. Duncan K, Rosean TR, Tompkins VS, Olivier A, Sompallae R, Zhan F et al. (18)F-FDG-PET/CT imaging in an IL-6- and MYC-driven mouse model of human multiple myeloma affords objective evaluation of plasma cell tumor progression and therapeutic response to the proteasome inhibitor ixazomib. Blood Cancer J 2013; 3: e165.

    Article  CAS  Google Scholar 

  12. Lee EC, Fitzgerald M, Bannerman B, Donelan J, Bano K, Terkelsen J et al. Antitumor activity of the investigational proteasome inhibitor MLN9708 in mouse models of B-cell and plasma cell malignancies. Clin Cancer Res 2011; 17: 7313–7323.

    Article  CAS  Google Scholar 

  13. Tai YT, Chang BY, Kong SY, Fulciniti M, Yang G, Calle Y et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 2012; 120: 1877–1887.

    Article  CAS  Google Scholar 

  14. Hu Y, Zheng M, Gali R, Tian Z, Topal Gorgun G, Munshi NC et al. A novel rapid-onset high-penetrance plasmacytoma mouse model driven by deregulation of cMYC cooperating with KRAS12V in BALB/c mice. Blood Cancer J 2013; 3: e156.

    Article  CAS  Google Scholar 

  15. Dechow T, Steidle S, Gotze KS, Rudelius M, Behnke K, Pechloff K et al. GP130 activation induces myeloma and collaborates with MYC. J Clin Invest 2014; 124: 5263–5274.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by: NIH Hematology Training Grant T32 HL007344 to VST; NIH Pre-doctoral Training Grant T32 AI007485 to TRR; NCI Core Grant P30CA086862 in support of the Holden Comprehensive Cancer Center; Senior Research Awards from the Multiple Myeloma Research Foundation and International Waldenström’s Macroglobulinemia Foundation to SJ; and R01CA151354 from the NCI to SJ. C.CD45.1 congenic mice and the retroviral transduction system were kindly provided, respectively, by Drs Lyse A Norian and Dawn E Quelle (both UI). Special thanks to the UI Flow Cytometry, Central Microscopy Research and Comparative Pathology facilities for expert assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Janz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tompkins, V., Rosean, T., Holman, C. et al. Adoptive B-cell transfer mouse model of human myeloma. Leukemia 30, 962–966 (2016). https://doi.org/10.1038/leu.2015.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.197

This article is cited by

Search

Quick links