Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mouse models for core binding factor leukemia

Abstract

RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Osato M . Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 2004; 23: 4284–4296.

    CAS  PubMed  Google Scholar 

  2. Speck NA, Gilliland DG . Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2: 502–513.

    CAS  PubMed  Google Scholar 

  3. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    CAS  PubMed  Google Scholar 

  4. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–1824.

    CAS  PubMed  Google Scholar 

  5. Kuo MC, Liang DC, Huang CF, Shih YS, Wu JH, Lin TL et al. RUNX1 mutations are frequent in chronic myelomonocytic leukemia and mutations at the C-terminal region might predict acute myeloid leukemia transformation. Leukemia 2009; 23: 1426–1431.

    CAS  PubMed  Google Scholar 

  6. de Guzman CG, Warren AJ, Zhang Z, Gartland L, Erickson P, Drabkin H et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 2002; 22: 5506–5517.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002; 196: 1227–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Grisolano JL, O'Neal J, Cain J, Tomasson MH . An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2003; 100: 9506–9511.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood 2006 107: 3303–3312.

    CAS  PubMed  Google Scholar 

  10. Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 2006; 12: 945–949.

    CAS  PubMed  Google Scholar 

  11. Goemans BF, Zwaan CM, Miller M, Zimmermann M, Harlow A, Meshinchi S et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005; 19: 1536–1542.

    CAS  PubMed  Google Scholar 

  12. Zuber J, Radtke I, Pardee TS, Zhao Z, Rappaport AR, Luo W et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev 2009; 23: 877–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krejci O, Wunderlich M, Geiger H, Chou FS, Schleimer D, Jansen M et al. p53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood 2008; 111: 2190–2199.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y et al. AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 2008; 111: 4297–4308.

    CAS  PubMed  Google Scholar 

  15. Yang Y, Wang W, Cleaves R, Zahurak M, Cheng L, Civin CI et al. Acceleration of G(1) cooperates with core binding factor beta-smooth muscle myosin heavy chain to induce acute leukemia in mice. Cancer Res 2002; 62: 2232–2235.

    CAS  PubMed  Google Scholar 

  16. Kim HG, Kojima K, Swindle CS, Cotta CV, Huo Y, Reddy V et al. FLT3-ITD cooperates with inv(16) to promote progression to acute myeloid leukemia. Blood 2008; 111: 1567–1574.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsuzuki S, Seto M, Greaves M, Enver T . Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci USA 2004; 101: 8443–8448.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fischer M, Schwieger M, Horn S, Niebuhr B, Ford A, Roscher S et al. Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene 2005; 24: 7579–7591.

    CAS  PubMed  Google Scholar 

  19. Hjalgrim LL, Madsen HO, Melbye M, Jorgensen P, Christiansen M, Andersen MT et al. Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia. Br J Cancer 2002; 87: 994–999.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 354: 1499–1503.

    CAS  PubMed  Google Scholar 

  21. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kogan SC, Lagasse E, Atwater S, Bae SC, Weissman I, Ito Y et al. The PEBP2betaMYH11 fusion created by Inv(16)(p13;q22) in myeloid leukemia impairs neutrophil maturation and contributes to granulocytic dysplasia. Proc Natl Acad Sci USA 1998; 95: 11863–11868.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gottgens B, Nastos A, Kinston S, Piltz S, Delabesse EC, Stanley M et al. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J 2002; 21: 3039–3050.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gothert JR, Gustin SE, Hall MA, Green AR, Gottgens B, Izon DJ et al. In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 2005; 105: 2724–2732.

    PubMed  Google Scholar 

  25. Ng CE, Yokomizo T, Yamashita N, Cirovic B, Jin H, Wen Z et al. A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells 2010; 28: 1869–1881.

    CAS  PubMed  Google Scholar 

  26. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–2115.

    CAS  PubMed  Google Scholar 

  27. Cabezas-Wallscheid N, Eichwald V, de Graaf J, Lower M, Lehr HA, Kreft A et al. Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model. EMBO Mol Med 2013; 5: 1804–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene. Nat Genet 1997; 15: 303–306.

    CAS  PubMed  Google Scholar 

  29. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    CAS  PubMed  Google Scholar 

  30. Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 1996; 87: 687–696.

    CAS  PubMed  Google Scholar 

  31. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    CAS  PubMed  Google Scholar 

  32. Fenske TS, Pengue G, Mathews V, Hanson PT, Hamm SE, Riaz N et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci USA 2004; 101: 15184–15189.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005; 115: 2159–2168.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nucifora G, Larson RA, Rowley JD . Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 1993; 82: 712–715.

    CAS  PubMed  Google Scholar 

  35. Shima T, Miyamoto T, Kikushige Y, Yuda J, Tochigi T, Yoshimoto G et al. The ordered acquisition of Class II and Class I mutations directs formation of human t(8;21) acute myelogenous leukemia stem cell. Exp Hematol 2014; 42: 955–965, e951-955.

    CAS  PubMed  Google Scholar 

  36. Buchholz F, Refaeli Y, Trumpp A, Bishop JM . Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep 2000; 1: 133–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 2014; 516: 423–427.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999; 23: 144–146.

    CAS  PubMed  Google Scholar 

  39. Carella C, Bonten J, Sirma S, Kranenburg TA, Terranova S, Klein-Geltink R et al. MN1 overexpression is an important step in the development of inv(16) AML. Leukemia 2007; 21: 1679–1690.

    CAS  PubMed  Google Scholar 

  40. Kuo YH, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP et al. Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 2006; 9: 57–68.

    CAS  PubMed  Google Scholar 

  41. Kuo YH, Zaidi SK, Gornostaeva S, Komori T, Stein GS, Castilla LH . Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood 2009; 113: 3323–3332.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Haferlach C, Dicker F, Kohlmann A, Schindela S, Weiss T, Kern W et al. AML with CBFB-MYH11 rearrangement demonstrate RAS pathway alterations in 92% of all cases including a high frequency of NF1 deletions. Leukemia 2010; 24: 1065–1069.

    CAS  PubMed  Google Scholar 

  43. Zhao L, Melenhorst JJ, Alemu L, Kirby M, Anderson S, Kench M et al. KIT with D816 mutations cooperates with CBFB-MYH11 for leukemogenesis in mice. Blood 2012; 119: 1511–1521.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Xue L, Pulikkan JA, Valk PJ, Castilla LH . NrasG12D oncoprotein inhibits apoptosis of preleukemic cells expressing Cbfbeta-SMMHC via activation of MEK/ERK axis. Blood 2014; 124: 426–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Illendula A, Pulikkan JA, Zong H, Grembecka J, Xue L, Sen S et al. Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFbeta-SMMHC delays leukemia in mice. Science 2015; 347: 779–784.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kamikubo Y, Zhao L, Wunderlich M, Corpora T, Hyde RK, Paul TA et al. Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1. Cancer Cell 2010; 17: 455–468.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1 the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    CAS  PubMed  Google Scholar 

  48. Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 2004; 10: 299–304.

    CAS  PubMed  Google Scholar 

  49. Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R et al. Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 2005; 106: 494–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Putz G, Rosner A, Nuesslein I, Schmitz N, Buchholz F . AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene 2006; 25: 929–939.

    CAS  PubMed  Google Scholar 

  51. Motoda L, Osato M, Yamashita N, Jacob B, Chen LQ, Yanagida M et al. Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells 2007; 25: 2976–2986.

    CAS  PubMed  Google Scholar 

  52. Wang CQ, Jacob B, Nah GS, Osato M . Runx family genes, niche, and stem cell quiescence. Blood Cells Mol Dis 2010; 44: 275–286.

    CAS  PubMed  Google Scholar 

  53. Jacob B, Osato M, Yamashita N, Wang CQ, Taniuchi I, Littman DR et al. Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood 2010; 115: 1610–1620.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    CAS  PubMed  Google Scholar 

  55. Wang CQ, Motoda L, Satake M, Ito Y, Taniuchi I, Tergaonkar V et al. Runx3 deficiency results in myeloproliferative disorder in aged mice. Blood 2013; 122: 562–566.

    CAS  PubMed  Google Scholar 

  56. Wang CQ, Krishnan V, Tay LS, Chin DW, Koh CP, Chooi JY et al. Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects. Cell Rep 2014; 8: 767–782.

    CAS  PubMed  Google Scholar 

  57. Cheng CK, Li L, Cheng SH, Lau KM, Chan NP, Wong RS et al. Transcriptional repression of the RUNX3/AML2 gene by the t(8;21) and inv(16) fusion proteins in acute myeloid leukemia. Blood 2008; 112: 3391–3402.

    CAS  PubMed  Google Scholar 

  58. Satpathy AT, Briseno CG, Cai X, Michael DG, Chou C, Hsiung S et al. Runx1 and Cbfbeta regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder. Blood 2014; 123: 2968–2977.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang CQ, Chin DW, Chooi JY, Chng WJ, Taniuchi I, Tergaonkar V et al. Cbfb deficiency results in differentiation blocks and stem/progenitor cell expansion in hematopoiesis. Leukemia 2015; 29: 753–757.

    CAS  PubMed  Google Scholar 

  60. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116: 354–365.

    CAS  PubMed  Google Scholar 

  61. Ferrara F, Schiffer CA . Acute myeloid leukaemia in adults. Lancet 2013; 381: 484–495.

    PubMed  Google Scholar 

  62. Castilla LH, Perrat P, Martinez NJ, Landrette SF, Keys R, Oikemus S et al. Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia. Proc Natl Acad Sci USA 2004; 101: 4924–4929.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, Comenzo RL et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 2003; 102: 4369–4376.

    CAS  PubMed  Google Scholar 

  64. Basecke J, Schwieger M, Griesinger F, Schiedlmeier B, Wulf G, Trumper L et al. AML1/ETO promotes the maintenance of early hematopoietic progenitors in NOD/SCID mice but does not abrogate their lineage specific differentiation. Leuk Lymphoma 2005; 46: 265–272.

    PubMed  Google Scholar 

  65. Wunderlich M, Krejci O, Wei J, Mulloy JC . Human CD34+ cells expressing the inv(16) fusion protein exhibit a myelomonocytic phenotype with greatly enhanced proliferative ability. Blood 2006; 108: 1690–1697.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 2011; 121: 384–395.

    CAS  PubMed  Google Scholar 

  67. Sanchez PV, Perry RL, Sarry JE, Perl AE, Murphy K, Swider CR et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia 2009; 23: 2109–2117.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    CAS  PubMed  Google Scholar 

  69. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 2010; 7: 708–717.

    CAS  PubMed  Google Scholar 

  70. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    CAS  PubMed  Google Scholar 

  71. Pearce DJ, Taussig D, Zibara K, Smith LL, Ridler CM, Preudhomme C et al. AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood 2006; 107: 1166–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 2011; 108: 2378–2383.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010; 24: 1785–1788.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32: 364–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chou FS, Griesinger A, Wunderlich M, Lin S, Link KA, Shrestha M et al. The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO. Blood 2012; 120: 709–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pulikkan JA, Madera D, Xue L, Bradley P, Landrette SF, Kuo YH et al. Thrombopoietin/MPL participates in initiating and maintaining RUNX1-ETO acute myeloid leukemia via PI3K/AKT signaling. Blood 2012; 120: 868–879.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O'Laughlin M et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014; 25: 379–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Duque-Afonso J, Cleary ML . The AML salad bowl. Cancer Cell 2014; 25: 265–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schlenk RF, Benner A, Krauter J, Buchner T, Sauerland C, Ehninger G et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 2004; 22: 3741–3750.

    CAS  PubMed  Google Scholar 

  80. Marcucci G, Mrozek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 2005; 23: 5705–5717.

    PubMed  Google Scholar 

  81. Kurosawa S, Miyawaki S, Yamaguchi T, Kanamori H, Sakura T, Moriuchi Y et al. Prognosis of patients with core binding factor acute myeloid leukemia after first relapse. Haematologica 2013; 98: 1525–1531.

    PubMed  PubMed Central  Google Scholar 

  82. Hospital MA, Prebet T, Bertoli S, Thomas X, Tavernier E, Braun T et al. Core-binding factor acute myeloid leukemia in first relapse: a retrospective study from the French AML Intergroup. Blood 2014; 124: 1312–1319.

    CAS  PubMed  Google Scholar 

  83. Yan M, Burel SA, Peterson LF, Kanbe E, Iwasaki H, Boyapati A et al. Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA 2004; 101: 17186–17191.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Andreasson P, Schwaller J, Anastasiadou E, Aster J, Gilliland DG . The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo. Cancer Genet Cytogenet 2001; 130: 93–104.

    CAS  PubMed  Google Scholar 

  85. Ford AM, Palmi C, Bueno C, Hong D, Cardus P, Knight D et al. The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Invest 2009; 119: 826–836.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kantner HP, Warsch W, Delogu A, Bauer E, Esterbauer H, Casanova E et al. ETV6/RUNX1 induces reactive oxygen species and drives the accumulation of DNA damage in B cells. Neoplasia 2013; 15: 1292–1300.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Matheny CJ, Speck ME, Cushing PR, Zhou Y, Corpora T, Regan M et al. Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. EMBO J 2007; 26: 1163–1175.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dowdy CR, Xie R, Frederick D, Hussain S, Zaidi SK, Vradii D et al. Definitive hematopoiesis requires Runx1 C-terminal-mediated subnuclear targeting and transactivation. Hum Mol Genet 2010; 19: 1048–1057.

    CAS  PubMed  Google Scholar 

  89. Heilman SA, Kuo YH, Goudswaard CS, Valk PJ, Castilla LH . Cbfbeta reduces Cbfbeta-SMMHC-associated acute myeloid leukemia in mice. Cancer Res 2006; 66: 11214–11218.

    CAS  PubMed  Google Scholar 

  90. Schindler JW, Van Buren D, Foudi A, Krejci O, Qin J, Orkin SH et al. TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell 2009; 5: 43–53.

    CAS  PubMed  Google Scholar 

  91. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA . Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457: 887–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Naoe Y, Setoguchi R, Akiyama K, Muroi S, Kuroda M, Hatam F et al. Repression of interleukin-4 in T helper type 1 cells by Runx/Cbf beta binding to the Il4 silencer. J Exp Med 2007; 204: 1749–1755.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tober J, Yzaguirre AD, Piwarzyk E, Speck NA . Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development 2013; 140: 3765–3776.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Yamashita N, Osato M, Huang L, Yanagida M, Kogan SC, Iwasaki M et al. Haploinsufficiency of Runx1/AML1 promotes myeloid features and leukaemogenesis in BXH2 mice. Br J Haematol 2005; 131: 495–507.

    CAS  PubMed  Google Scholar 

  95. Chou FS, Wunderlich M, Griesinger A, Mulloy JC . N-Ras(G12D) induces features of stepwise transformation in preleukemic human umbilical cord blood cultures expressing the AML1-ETO fusion gene. Blood 2011; 117: 2237–2240.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319: 336–339.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Medical Research Council, Singapore National Research Foundation, Ministry of Education under the Research Center of Excellence programme, A*STAR (Agency of Science Technology and Research) and Biomedical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Osato.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, D., Watanabe-Okochi, N., Wang, C. et al. Mouse models for core binding factor leukemia. Leukemia 29, 1970–1980 (2015). https://doi.org/10.1038/leu.2015.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.181

This article is cited by

Search

Quick links