Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice

Abstract

Osteoblasts, the bone forming cells, affect self-renewal and expansion of hematopoietic stem cells (HSCs), as well as homing of healthy hematopoietic cells and tumor cells into the bone marrow. Constitutive activation of β-catenin in osteoblasts is sufficient to alter the differentiation potential of myeloid and lymphoid progenitors and to initiate the development of acute myeloid leukemia (AML) in mice. We show here that Notch1 is the receptor mediating the leukemogenic properties of osteoblast-activated β-catenin in HSCs. Moreover, using cell-specific gene inactivation mouse models, we show that FoxO1 expression in osteoblasts is required for and mediates the leukemogenic properties of β-catenin. At the molecular level, FoxO1 interacts with β-catenin in osteoblasts to induce expression of the Notch ligand, Jagged-1. Subsequent activation of Notch signaling in long-term repopulating HSC progenitors induces the leukemogenic transformation of HSCs and ultimately leads to the development of AML. These findings identify FoxO1 expressed in osteoblasts as a factor affecting hematopoiesis and provide a molecular mechanism whereby the FoxO1/activated β-catenin interaction results in AML. These observations support the notion that the bone marrow niche is an instigator of leukemia and raise the prospect that FoxO1 oncogenic properties may occur in other tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  Google Scholar 

  2. Ding L, Saunders TL, Enikolopov G, Morrison SJ . Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481: 457–462.

    Article  CAS  Google Scholar 

  3. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    Article  CAS  Google Scholar 

  4. Lo CC, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009; 457: 92–96.

    Article  Google Scholar 

  5. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  Google Scholar 

  6. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  Google Scholar 

  7. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 2010; 6: 251–264.

    Article  CAS  Google Scholar 

  8. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 2012; 18: 1651–1657.

    Article  CAS  Google Scholar 

  9. Levesque JP, Helwani FM, Winkler IG . The endosteal 'osteoblastic' niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24: 1979–1992.

    Article  Google Scholar 

  10. Oh IH, Kwon KR . Concise review: multiple niches for hematopoietic stem cell regulations. Stem Cells 2010; 28: 1243–1249.

    CAS  PubMed  Google Scholar 

  11. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  Google Scholar 

  12. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  Google Scholar 

  13. El-Badri NS, Wang BY, Cherry, Good RA . Osteoblasts promote engraftment of allogeneic hematopoietic stem cells. Exp Hematol 1998; 26: 110–116.

    CAS  PubMed  Google Scholar 

  14. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106: 1232–1239.

    Article  CAS  Google Scholar 

  15. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007; 1: 685–697.

    Article  CAS  Google Scholar 

  16. Janzen V, Fleming HE, Riedt T, Karlsson G, Riese MJ, Lo CC et al. Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell 2008; 2: 584–594.

    Article  CAS  Google Scholar 

  17. Mayack SR, Wagers AJ . Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood 2008; 112: 519–531.

    Article  CAS  Google Scholar 

  18. Wang LD, Wagers AJ . Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 2011; 12: 643–655.

    Article  CAS  Google Scholar 

  19. Chan CK, Chen CC, Luppen CA, Kim JB, DeBoer AT, Wei K et al. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 2009; 457: 490–494.

    Article  CAS  Google Scholar 

  20. Wu JY, Purton LE, Rodda SJ, Chen M, Weinstein LS, McMahon AP et al. Osteoblastic regulation of B lymphopoiesis is mediated by Gs{alpha}-dependent signaling pathways. Proc Natl Acad Sci USA 2008; 105: 16976–16981.

    Article  CAS  Google Scholar 

  21. Fulzele K, Krause DS, Panaroni C, Saini V, Barry KJ, Liu X et al. Myelopoiesis is regulated by osteocytes through Gsalpha-dependent signaling. Blood 2013; 121: 930–939.

    Article  CAS  Google Scholar 

  22. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    Article  CAS  Google Scholar 

  23. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 2007; 129: 1097–1110.

    Article  CAS  Google Scholar 

  24. Kim YW, Koo BK, Jeong HW, Yoon MJ, Song R, Shin J et al. Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 2008; 112: 4628–4638.

    Article  CAS  Google Scholar 

  25. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    Article  CAS  Google Scholar 

  26. Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP et al. Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med 2013; 19: 1513–1517.

    Article  CAS  Google Scholar 

  27. Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 2014; 506: 240–244.

    Article  CAS  Google Scholar 

  28. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC . Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 2005; 308: 1181–1184.

    Article  CAS  Google Scholar 

  29. Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC . Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 2007; 282: 27298–27305.

    Article  CAS  Google Scholar 

  30. Iyer S, Han L, Bartell SM, Kim HN, Gubrij I, de CR et al. Sirtuin1 (Sirt1) Promotes Cortical Bone Formation by Preventing beta (beta)-Catenin Sequestration by FoxO Transcription Factors in Osteoblast Progenitors. J Biol Chem 2014; 289: 24069–24078.

    Article  CAS  Google Scholar 

  31. Iyer S, Ambrogini E, Bartell SM, Han L, Roberson PK, de CR et al. FOXOs attenuate bone formation by suppressing Wnt signaling. J Clin Invest 2013; 123: 3409–3419.

    Article  CAS  Google Scholar 

  32. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 2011; 146: 697–708.

    Article  CAS  Google Scholar 

  33. Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 2007; 128: 309–323.

    Article  CAS  Google Scholar 

  34. Dacquin R, Starbuck M, Schinke T, Karsenty G . Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev Dyn 2002; 224: 245–251.

    Article  CAS  Google Scholar 

  35. Harada N, Tamai Y, Ishikawa T, Sauer B, Takaku K, Oshima M et al. Intestinal polyposis in mice with a dominant stable mutation of the beta-catenin gene. EMBO J 1999; 18: 5931–5942.

    Article  CAS  Google Scholar 

  36. Rached MT, Kode A, Silva BC, Jung DY, Gray S, Ong H et al. FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest 2010; 120: 357–368.

    Article  CAS  Google Scholar 

  37. Pan Y, Lin MH, Tian X, Cheng HT, Gridley T, Shen J et al. gamma-secretase functions through Notch signaling to maintain skin appendages but is not required for their patterning or initial morphogenesis. Dev Cell 2004; 7: 731–743.

    Article  CAS  Google Scholar 

  38. de BJ, Williams A, Skavdis G, Harker N, Coles M, Tolaini M et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 2003; 33: 314–325.

    Article  Google Scholar 

  39. Rossert J, Eberspaecher H, de CB . Separate cis-acting DNA elements of the mouse pro-alpha 1(I) collagen promoter direct expression of reporter genes to different type I collagen-producing cells in transgenic mice. J Cell Biol 1995; 129: 1421–1432.

    Article  CAS  Google Scholar 

  40. Kogan SC, Ward JM, Anver MR, Berman JJ, Brayton C, Cardiff RD et al. Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 2002; 100: 238–245.

    Article  CAS  Google Scholar 

  41. Cuenco GM, Nucifora G, Ren R . Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML. Proc Natl Acad Sci USA 2000; 97: 1760–1765.

    Article  CAS  Google Scholar 

  42. Rached MT, Kode A, Xu L, Yoshikawa Y, Paik JH, DePinho RA et al. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab 2010; 11: 147–160.

    Article  CAS  Google Scholar 

  43. Ambrogini E, Almeida M, Martin-Millan M, Paik JH, DePinho RA, Han L et al. FoxO-mediated defense against oxidative stress in osteoblasts is indispensable for skeletal homeostasis in mice. Cell Metab 2010; 11: 136–146.

    Article  CAS  Google Scholar 

  44. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325–339.

    Article  CAS  Google Scholar 

  45. Santamaria CM, Chillon MC, Garcia-Sanz R, Perez C, Caballero MD, Ramos F et al. High FOXO3a expression is associated with a poorer prognosis in AML with normal cytogenetics. Leuk Res 2009; 33: 1706–1709.

    Article  CAS  Google Scholar 

  46. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676–680.

    Article  CAS  Google Scholar 

  47. Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 2007; 109: 3706–3712.

    Article  CAS  Google Scholar 

  48. Taichman RS, Reilly MJ, Emerson SG . Human osteoblasts support human hematopoietic progenitor cells in in vitro bone marrow cultures. Blood 1996; 87: 518–524.

    CAS  PubMed  Google Scholar 

  49. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA . Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322: 1861–1865.

    Article  CAS  Google Scholar 

  50. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201: 1781–1791.

    Article  CAS  Google Scholar 

  51. Sneddon JB, Werb Z . Location, location, location: the cancer stem cell niche. Cell Stem Cell 2007; 1: 607–611.

    Article  CAS  Google Scholar 

  52. Miyamoto K, Yoshida S, Kawasumi M, Hashimoto K, Kimura T, Sato Y et al. Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization. J Exp Med 2011; 208: 2175–2181.

    Article  CAS  Google Scholar 

  53. Lowell CA, Niwa M, Soriano P, Varmus HE . Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 1996; 87: 1780–1792.

    CAS  PubMed  Google Scholar 

  54. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M et al. Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 1999; 14: 1654–1663.

    Article  CAS  Google Scholar 

  55. Sugimura R, He XC, Venkatraman A, Arai F, Box A, Semerad C et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell 2012; 150: 351–365.

    Article  CAS  Google Scholar 

  56. Schaniel C, Sirabella D, Qiu J, Niu X, Lemischka IR, Moore KA . Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells. Blood 2011; 118: 2420–2429.

    Article  CAS  Google Scholar 

  57. Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell 2012; 149: 63–74.

    Article  CAS  Google Scholar 

  58. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006; 12: 1167–1174.

    Article  Google Scholar 

  59. Krause DS, Lazarides K, von Andrian UH, Van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    Article  CAS  Google Scholar 

  60. Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 2011; 20: 661–673.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr Makoto Taketo for providing the Catnb+/lox(ex3) mice and to Dr Ronald A DePinho for providing the FoxO1fl mice. We are also thankful to Steven Shikhel for critical reading of the manuscript, to Alexandra Tarasenko for technical assistance, and to the histology and metabolic unit facility of the Diabetes and Endocrinology Research Center (DERC, supported by NIDDK DK063608-07) and the Molecular Pathology facility of the Herbert Irving Cancer Center of Columbia University Medical Center for help with histological analysis. This work was supported by the National Institutes of Health (R01 AR054447, R01 AR055931 and P01 AG032959 to SK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kousteni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kode, A., Mosialou, I., Manavalan, S. et al. FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice. Leukemia 30, 1–13 (2016). https://doi.org/10.1038/leu.2015.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.161

This article is cited by

Search

Quick links