Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myleproliferative neoplasms

A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease

Abstract

Controlled self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs) are critical for vertebrate development and survival. These processes are tightly regulated by the transcription factors, signaling molecules and epigenetic factors. Impaired regulations of their function could result in hematological malignancies. Using a large-scale zebrafish N-ethyl-N-nitrosourea mutagenesis screening, we identified a line named LDD731, which presented significantly increased HSPCs in hematopoietic organs. Further analysis revealed that the cells of erythroid/myeloid lineages in definitive hematopoiesis were increased while the primitive hematopoiesis was not affected. The homozygous mutation was lethal with a median survival time around 14–15 days post fertilization. The causal mutation was located by positional cloning in the c-cbl gene, the human ortholog of which, c-CBL, is found frequently mutated in myeloproliferative neoplasms (MPN) or acute leukemia. Sequence analysis showed the mutation in LDD731 caused a histidine-to-tyrosine substitution of the amino acid codon 382 within the RING finger domain of c-Cbl. Moreover, the myeloproliferative phenotype in zebrafish seemed dependent on the Flt3 (fms-like tyrosine kinase 3) signaling, consistent with that observed in both mice and humans. Our study may shed new light on the pathogenesis of MPN and provide a useful in vivo vertebrate model of this syndrome for screening drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Meier B, Burton JH . Myeloproliferative disorders. Emerg Med Clin North Am 2014; 32: 597–612.

    Article  Google Scholar 

  2. Klco JM, Vij R, Kreisel FH, Hassan A, Frater JL . Molecular pathology of myeloproliferative neoplasms. Am J Clin Pathol 2010; 133: 602–615.

    Article  Google Scholar 

  3. Tefferi A, Vainchenker W . Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29: 573–582.

    Article  CAS  Google Scholar 

  4. Langabeer SE, Haslam K, McMahon C . The molecular landscape of childhood myeloproliferative neoplasms. Leuk Res 2014; 38: 997–998.

    Article  CAS  Google Scholar 

  5. Wilkinson AC, Gottgens B . Transcriptional regulation of haematopoietic stem cells. Adv Exp Med Biol 2013; 786: 187–212.

    Article  CAS  Google Scholar 

  6. Molofsky AV, Pardal R, Morrison SJ . Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol 2004; 16: 700–707.

    Article  CAS  Google Scholar 

  7. Wilson A, Laurenti E, Trumpp A . Balancing dormant and self-renewing hematopoietic stem cells. Curr Opin Genet Dev 2009; 19: 461–468.

    Article  CAS  Google Scholar 

  8. Warr MR, Pietras EM, Passegue E . Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. Wiley Interdiscip Rev Syst Biol Med 2011; 3: 681–701.

    Article  CAS  Google Scholar 

  9. de Jong JL, Zon LI . Use of the zebrafish system to study primitive and definitive hematopoiesis. Annu Rev Genet 2005; 39: 481–501.

    Article  CAS  Google Scholar 

  10. Bertrand JY, Traver D . Hematopoietic cell development in the zebrafish embryo. Curr Opin Hematol 2009; 16: 243–248.

    Article  CAS  Google Scholar 

  11. Martin CS, Moriyama A, Zon LI . Hematopoietic stem cells, hematopoiesis and disease: lessons from the zebrafish model. Genome Med 2011; 3: 83.

    Article  CAS  Google Scholar 

  12. Galloway JL, Zon LI . Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr Top Dev Biol 2003; 53: 139–158.

    Article  CAS  Google Scholar 

  13. Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity 2006; 25: 963–975.

    Article  CAS  Google Scholar 

  14. Kissa K, Murayama E, Zapata A, Cortes A, Perret E, Machu C et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 2008; 111: 1147–1156.

    Article  CAS  Google Scholar 

  15. Jin H, Xu J, Wen Z . Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. Blood 2007; 109: 5208–5214.

    Article  CAS  Google Scholar 

  16. Bahary N, Davidson A, Ransom D, Shepard J, Stern H, Trede N et al. The Zon laboratory guide to positional cloning in zebrafish. Methods Cell Biol 2004; 77: 305–329.

    Article  CAS  Google Scholar 

  17. Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S et al. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 1998; 18: 338–343.

    Article  CAS  Google Scholar 

  18. Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E, Kaplan S et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics 1999; 58: 219–232.

    Article  CAS  Google Scholar 

  19. Thisse C, Thisse B . High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 2008; 3: 59–69.

    Article  CAS  Google Scholar 

  20. Yue R, Li H, Liu H, Li Y, Wei B, Gao G et al. Thrombin receptor regulates hematopoiesis and endothelial-to-hematopoietic transition. Dev Cell 2012; 22: 1092–1100.

    Article  CAS  Google Scholar 

  21. Greig KT, Carotta S, Nutt SL . Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 2008; 20: 247–256.

    Article  CAS  Google Scholar 

  22. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443.

    Article  CAS  Google Scholar 

  23. Hexner EO, Serdikoff C, Jan M, Swider CR, Robinson C, Yang S et al. Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 2008; 111: 5663–5671.

    Article  CAS  Google Scholar 

  24. Chan J, Bayliss PE, Wood JM, Roberts TM . Dissection of angiogenic signaling in zebrafish using a chemical genetic approach. Cancer Cell 2002; 1: 257–267.

    Article  CAS  Google Scholar 

  25. Ofran Y . Concealed dagger in FLT3/ITD+ AML. Blood 2014; 124: 2317–2319.

    Article  CAS  Google Scholar 

  26. Xie HM, Gao L, Wang N, Xu YY, Shi JL, Yu L et al. FLT3 gene overexpression and its clinical significance in acute myeloid leukemia with AML1/ETO fusion gene positive. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2014; 22: 1199–1205.

    CAS  PubMed  Google Scholar 

  27. Sargin B, Choudhary C, Crosetto N, Schmidt MH, Grundler R, Rensinghoff M et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 2007; 110: 1004–1012.

    Article  CAS  Google Scholar 

  28. He BL, Shi X, Man CH, Ma AC, Ekker SC, Chow HC et al. Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood 2014; 123: 2518–2529.

    Article  CAS  Google Scholar 

  29. Oggier DM, Lenard A, Kury M, Hoeger B, Affolter M, Fent K . Effects of the protein kinase inhibitor PKC412 on gene expression and link to physiological effects in zebrafish Danio rerio eleuthero-embryos. Toxicol Sci 2011; 119: 104–115.

    Article  CAS  Google Scholar 

  30. Nau MM, Lipkowitz S . Comparative genomic organization of the cbl genes. Gene 2003; 308: 103–113.

    Article  CAS  Google Scholar 

  31. Rathinam C, Thien CB, Langdon WY, Gu H, Flavell RA . The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells. Genes Dev 2008; 22: 992–997.

    Article  CAS  Google Scholar 

  32. Thien CB, Langdon WY . Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001; 2: 294–307.

    Article  CAS  Google Scholar 

  33. Deshaies RJ, Joazeiro CA . RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009; 78: 399–434.

    Article  CAS  Google Scholar 

  34. Allen C, Hills RK, Lamb K, Evans C, Tinsley S, Sellar R et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia 2013; 27: 1891–1901.

    Article  CAS  Google Scholar 

  35. Ogawa S, Sanada M, Shih LY, Suzuki T, Otsu M, Nakauchi H et al. Gain-of-function c-CBL mutations associated with uniparental disomy of 11q in myeloid neoplasms. Cell Cycle 2010; 9: 1051–1056.

    Article  CAS  Google Scholar 

  36. Adelaide J, Gelsi-Boyer V, Rocquain J, Carbuccia N, Birnbaum DJ, Finetti P et al. Gain of CBL-interacting protein, a possible alternative to CBL mutations in myeloid malignancies. Leukemia 2010; 24: 1539–1541.

    Article  CAS  Google Scholar 

  37. Bandi SR, Brandts C, Rensinghoff M, Grundler R, Tickenbrock L, Kohler G et al. E3 ligase-defective Cbl mutants lead to a generalized mastocytosis and myeloproliferative disease. Blood 2009; 114: 4197–4208.

    Article  CAS  Google Scholar 

  38. Aranaz P, Migueliz I, Hurtado C, Erquiaga I, Larrayoz MJ, Calasanz MJ et al. CBL RING finger deletions are common in core-binding factor acute myeloid leukemias. Leuk Lymphoma 2013; 54: 428–431.

    Article  CAS  Google Scholar 

  39. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 2009; 460: 904–908.

    Article  CAS  Google Scholar 

  40. Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ et al. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood 2007; 110: 1022–1024.

    Article  CAS  Google Scholar 

  41. Abbas S, Rotmans G, Lowenberg B, Valk PJ . Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica 2008; 93: 1595–1597.

    Article  CAS  Google Scholar 

  42. Reindl C, Quentmeier H, Petropoulos K, Greif PA, Benthaus T, Argiropoulos B et al. CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin Cancer Res 2009; 15: 2238–2247.

    Article  CAS  Google Scholar 

  43. Mahfouz RA, Hoteit R, Salem Z, Bazarbachi A, Mugharbel A, Farhat F et al. JAK2 V617F gene mutation in the laboratory work-up of myeloproliferative disorders: experience of a major referral center in Lebanon. Genet Test Mol Biomarkers 2011; 15: 263–265.

    Article  CAS  Google Scholar 

  44. Kales SC, Ryan PE, Nau MM, Lipkowitz S . Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res 2010; 70: 4789–4794.

    Article  CAS  Google Scholar 

  45. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 2009; 113: 6182–6192.

    Article  CAS  Google Scholar 

  46. Schnittger S, Bacher U, Alpermann T, Reiter A, Ulke M, Dicker F et al. Use of CBL exon 8 and 9 mutations in diagnosis of myeloproliferative neoplasms and myelodysplastic/myeloproliferative disorders: an analysis of 636 cases. Haematologica 2012; 97: 1890–1894.

    Article  CAS  Google Scholar 

  47. Niemeyer CM, Kang MW, Shin DH, Furlan I, Erlacher M, Bunin NJ et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 2010; 42: 794–800.

    Article  CAS  Google Scholar 

  48. Muramatsu H, Makishima H, Jankowska AM, Cazzolli H, O'Keefe C, Yoshida N et al. Mutations of an E3 ubiquitin ligase c-Cbl but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia. Blood 2010; 115: 1969–1975.

    Article  CAS  Google Scholar 

  49. Shiba N, Kato M, Park MJ, Sanada M, Ito E, Fukushima K et al. CBL mutations in juvenile myelomonocytic leukemia and pediatric myelodysplastic syndrome. Leukemia 2010; 24: 1090–1092.

    Article  CAS  Google Scholar 

  50. Hyakuna N, Muramatsu H, Higa T, Chinen Y, Wang X, Kojima S . Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder. Pediatr Blood Cancer 2014; 62: 542–544.

    Article  Google Scholar 

  51. Perez B, Mechinaud F, Galambrun C, Ben Romdhane N, Isidor B, Philip N et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet 2010; 47: 686–691.

    Article  CAS  Google Scholar 

  52. Ogawa S, Shih LY, Suzuki T, Otsu M, Nakauchi H, Koeffler HP et al. Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms. Clin Cancer Res 2010; 16: 3825–3831.

    Article  CAS  Google Scholar 

  53. Rathinam C, Thien CB, Flavell RA, Langdon WY . Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell 2010; 18: 341–352.

    Article  CAS  Google Scholar 

  54. Dikic I, Szymkiewicz I, Soubeyran P . Cbl signaling networks in the regulation of cell function. Cell Mol Life Sci 2003; 60: 1805–1827.

    Article  CAS  Google Scholar 

  55. Deeb KK, Smonskey MT, DeFedericis H, Deeb G, Sait SN, Wetzler M et al. Deletion and deletion/insertion mutations in the juxtamembrane domain of the FLT3 gene in adult acute myeloid leukemia. Leuk Res Rep 2014; 3: 86–89.

    PubMed  Google Scholar 

  56. Beer PA, Delhommeau F, LeCouedic JP, Dawson MA, Chen E, Bareford D et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 2010; 115: 2891–2900.

    Article  CAS  Google Scholar 

  57. Tefferi A . Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; 24: 1128–1138.

    Article  CAS  Google Scholar 

  58. Guglielmelli P, Vannucchi AM . Recent advances in diagnosis and treatment of chronic myeloproliferative neoplasms. F1000 Med Rep 2010; 2: pii: 16.

    Google Scholar 

  59. Konig H, Levis M . Targeting FLT3 to treat leukemia. Exp Opin Ther Targets 2014; 19: 37–54.

    Article  Google Scholar 

  60. Annesley CE, Brown P . The biology and targeting of FLT3 in pediatric leukemia. Front Oncol 2014; 4: 263.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Profs Zhu Chen for carefully revising the paper and guiding the work and Qiang Li critical reading of the manuscript, all members of the Laboratory of Development and Disease (LDD) for their technical assistance and helpful discussions, and for Drs Anskar Leung and Bai-Liang He for sharing the flt3 morpholino. This work was supported in part by Chinese National Key Basic Research Project (2013CB966800, 2011CB964803), Special Grant of Ministry of Health (201202003), Mega-projects of Science Research for the 12th Five-Year Plan (2013ZX09303302) and the National Natural Science Foundation of China (81123005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Deng, Y Zhou, Y Zhou or S Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Dong, M., Ma, L. et al. A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease. Leukemia 29, 2355–2365 (2015). https://doi.org/10.1038/leu.2015.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.154

This article is cited by

Search

Quick links