Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin

Abstract

AC133 is a prominent surface marker of CD34+ and CD34− hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte–macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yin AH, Miraglia S, Zanjani ES, Almeida-Porada G, Ogawa M, Leary AG et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90: 5002–5012.

    CAS  PubMed  Google Scholar 

  2. Bauer N, Fonseca AV, Florek M, Freund D, Jászai J, Bornhäuser M et al. New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 2008; 188: 127–138.

    Article  CAS  PubMed  Google Scholar 

  3. Corbeil D (ed) Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell Biology 1st edn. Springer: New York, NY, USA, 2013.

    Book  Google Scholar 

  4. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M . Isolation and characterization of human CD34-Lin- and CD34+Lin- hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 2000; 95: 2813–2820.

    CAS  PubMed  Google Scholar 

  5. Takahashi M, Matsuoka M, Sumide K, Nakatsuka R, Fujioka T, Kohno H . CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia 2014; 28: 1308–1315.

    Article  CAS  PubMed  Google Scholar 

  6. De Wynter EA, Buck D, Hart DC, Heywood R, Coutinho LH, Clayton A . CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells 1998; 16: 387–396.

    Article  CAS  PubMed  Google Scholar 

  7. Gordon PR, Leimig T, Babarin-Dorner A, Houston J, Holladay M, Mueller I et al. Large-scale isolation of CD133+ progenitor cells from G-CSF mobilized peripheral blood stem cells. Bone Marrow Transplant 2003; 31: 17–22.

    Article  CAS  PubMed  Google Scholar 

  8. Röper K, Corbeil D, Huttner WB . Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2000; 2: 582–592.

    Article  PubMed  Google Scholar 

  9. Giebel B, Corbeil D, Beckmann J, Höhn J, Freund J, Giesen K et al. Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood 2004; 104: 2332–2338.

    Article  CAS  PubMed  Google Scholar 

  10. Bockamp E, McLaughlin F, Murrell A, Green AR . Transcription factors and the regulation of haemopoiesis: lessons from GATA and SCL proteins. Bioessays 1994; 16: 481–488.

    Article  CAS  PubMed  Google Scholar 

  11. Arndt K, Grinenko T, Mendea N, Reichert D, Portz M, Ripicha T et al. CD133 is a modifier of hematopoietic progenitor frequencies but is dispensable for the maintenance of mouse hematopoietic stem cells. Proc Natl Acad Sci USA 2013; 110: 5582–5587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Irollo E, Pirozzi G . CD133: to be or not to be, is this the real question? Am J Transl Res 2013; 5: 563–581.

    PubMed  PubMed Central  Google Scholar 

  13. Cox CV, Diamanti P, Evely RS, Kearns PR, Blair A . Expression of CD133 on leukemia-initiating cells in childhood ALL. Blood 2009; 113: 3287–3296.

    Article  CAS  PubMed  Google Scholar 

  14. Medina DJ, Abass-Shereef J, Walton K, Goodell L, Aviv H, Strair R et al. Cobblestone-area forming cells derived from patients with mantle cell lymphoma are enriched for CD133+ tumor-initiating cells. PLoS One 2014; 9: e91042.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beghini A, Corlazzoli F, Del Giacco L, Re M, Lazzaroni F, Brioschi M et al. Regeneration-associated WNT signaling is activated in long-term reconstituting AC133bright acute myeloid leukemia cells. Neoplasia 2012; 14: 1236–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mak AB, Nixon AML, Moffat J . The mixed lineage leukemia (MLL) fusion-associated gene AF4 promotes CD133 transcription. Cancer Res 2012; 72: 1929–1934.

    Article  CAS  PubMed  Google Scholar 

  17. Shmelkov S, Jun L St, Clair R, McGarrigle D, Derderian CA, Usenko JK et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 2004; 103: 2055–2061.

    Article  CAS  PubMed  Google Scholar 

  18. De Felice L, Tatarelli C, Mascolo MG, Gregorj C, Agostini F et al. Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 2005; 65: 1505–1513.

    Article  CAS  PubMed  Google Scholar 

  19. Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res 2005; 319: 15–26.

    Article  CAS  PubMed  Google Scholar 

  20. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 2010; 70: 719–729.

    Article  CAS  PubMed  Google Scholar 

  21. Bauer N, Wilsch-Bräuninger M, Karbanova J, Fonseca AV, Strauss D, Freund D et al. Haematopoietic stem cell differentiation promotes the release of prominin-1/CD133-containing membrane vesicles - a role of the endocytic - exocytic pathway. EMBO Mol Med 2011; 3: 398–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iida H, Suzuki M, Goitsuka R, Ueno U . Hypoxia induces CD133 expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int J Oncol 2012; 40: 71–79.

    CAS  PubMed  Google Scholar 

  23. Mak AB, Nixon AML, Kittanakom S, Stewart JM, Chen GJ, Curak J et al. Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Rep 2012; 2: 951–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rappa G, Mercapide J, Anzanello F, Le T, Johlfs M, Fiscus R et al. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells. Exp Cell Res 2013; 319: 810–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wei Y, Jianga Y, Zoua F, Liub Y, Wanga S, Xu N et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA 2013; 110: 6829–6834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ . Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 2012; 26: 414–421.

    Article  CAS  PubMed  Google Scholar 

  27. Borer RA, Lehner CF, Eppenberger HM, Nigg EA . Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 1989; 56: 379–390.

    Article  CAS  PubMed  Google Scholar 

  28. Bates P, Laber D, Miller D, Thomas S, Tren JO . Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 2009; 86: 151–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanakahi LA, Dempsey LA, Li MJ, Maizels N . Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1. Proc Natl Acad Sci USA 1997; 94: 3605–3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grinstein E, Wernet P, Snijders PJ, Rösl F, Weinert I, Jia W et al. Nucleolin as activator of human papillomavirus type 18 oncogene transcription in cervical cancer. J Exp Med 2002; 196: 1067–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Angelov D, Bondarenko AV, Almagro S, Menoni H, Mongelard F, Hans F . Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes. EMBO J 2006; 25: 1669–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman MRK et al. Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 2007; 109: 3069–3075.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mongelard F, Bouvet P . Nucleolin: a multiFACeTed protein. Trends Cell Biol 2007; 17: 80–86.

    Article  CAS  PubMed  Google Scholar 

  34. Grinstein E, Wernet P . Cellular signalling in normal and cancerous stem cells. Cell Signal 2007; 19: 2428–2433.

    Article  CAS  PubMed  Google Scholar 

  35. Abdelmohsen K, Gorospe M . RNA-binding protein nucleolin in disease. RNA Biol 2012; 9: 799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Terskikh AV, Easterday MC, Li L, Hood L, Kornblum HI, Geschwind DH, Weissman IL . From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci USA 2001; 98: 7934–7939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grinstein E, Du Y, Santourlidis S, Christ J, Uhrberg M, Wernet P . Nucleolin regulates gene expression in CD34-positive hematopoietic cells. J Biol Chem 2007; 282: 12439–12449.

    Article  CAS  PubMed  Google Scholar 

  38. Allinne J, Pichugin A, Iarovaia O, Klibi M, Barat A, Zlotek-Zlotkiewicz E et al. Perinucleolar relocalization and nucleolin as crucial events in the transcriptional activation of key genes in mantle cell lymphoma. Blood 2014; 123: 2044–2053.

    Article  CAS  PubMed  Google Scholar 

  39. Auvray C, Delahaye A, Pflumio F, Haddad R, Amsellem S, Miri-Nezhad A et al. HOXC4 homeoprotein efficiently expands human hematopoietic stem cells and triggers similar molecular alterations as HOXB4. Haematologica 2012; 97: 168–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grinstein E, Mahotka C, Borkhardt A . Rb and nucleolin antagonize in controlling human CD34 gene expression. Cell Signal 2011; 23: 1358–1365.

    Article  CAS  PubMed  Google Scholar 

  41. Kratz-Albers K, Zuhlsdorp M, Leo R, Berdel WL, Buchner T, Serve H . Expression of AC133, a novel stem cell marker, on human leukemic blasts lacking CD34-antigen and on a human CD34+ leukemic line: MUTZ-2. Blood 1998; 92: 4485–4487.

    CAS  PubMed  Google Scholar 

  42. Millington M, Arndt A, Boyd M, Applegate T, Shen S . Towards a clinically relevant lentiviral transduction protocol for primary human CD34+ hematopoietic stem/progenitor cells. PLoS One 2009; 4: e6461.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salati S, Zini R, Bianchi E, Testa A, Mavilio F, Manfredini R et al. Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells. Stem Cells 2008; 26: 950–959.

    Article  CAS  PubMed  Google Scholar 

  44. Buske C, Feuring-Buske M, Abramovich C, Spiekermann K, Eaves CJ, Coulomb L et al. Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood 2002; 100: 862–868.

    Article  CAS  PubMed  Google Scholar 

  45. Cole ST, Danos O . Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. J Mol Biol 1987; 193: 599–608.

    Article  CAS  PubMed  Google Scholar 

  46. Burn TC, Satterthwaite AB, Tenen DG . The human CD34 hematopoietic stem cell antigen promoter and a 3' enhancer direct hematopoietic expression in tissue culture. Blood 1992; 80: 3051–3059.

    CAS  PubMed  Google Scholar 

  47. Staal FJ, van Noort M, Strous GJ, Clevers HC . Wnt signals are transmitted through N-terminally dephosphorylated β-catenin. EMBO Rep 2002; 3: 63–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manning B, Cantley LC . AKT/PKB signaling: navigating downstream. Cell 2007; 129: 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simon M, Grandage VL, Linch DC, Khwaja A . Constitutive activation of the Wnt/β-catenin signalling pathway in acute myeloid leukaemia. Oncogene 2005; 24: 2410–2420.

    Article  CAS  PubMed  Google Scholar 

  50. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F . Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 2004; 5: 91–102.

    Article  CAS  PubMed  Google Scholar 

  51. Jabbour E, Ottmann OG, Deininger M, Hochhaus A . Targeting the phosphoinositide 3-kinase pathway in hematologic malignancies. Haematologica 2014; 99: 7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kohli L, Passegue E . Surviving change: the metabolic journey of hematopoietic stem cells. Trends Cell Biol 2014; 24: 479–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika N et al. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 2007; 282: 11221–11229.

    Article  CAS  PubMed  Google Scholar 

  54. Lento W, Ito T, Zhao C, Harris JR, Huang W, Jiang C et al. Loss of β-catenin triggers oxidative stress and impairs hematopoietic regeneration. Genes Dev 2014; 28: 995–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Perry J, He X, Sugimura RC, Grindley JC, Haug JS, Ding S . Cooperation between both Wnt/β-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev 2011; 25: 1928–1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willertk K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  PubMed  Google Scholar 

  57. Pichiorri F, Palmieri D, De Luca L, Consiglio J, You J, Rocci A et al. In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J Exp Med 2013; 210: 951–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Domen J, Cheshier S, Weissman IL . The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of BCL-2 increases both their number and repopulation potential. J Exp Med 2000; 191: 253–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McCubrey JA, Steelman L, Bertrand FE, Davis NM, Abrams SL, Montalto G et al. Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 2014; 28: 15–33.

    Article  CAS  PubMed  Google Scholar 

  60. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013; 12: 329–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded (PI E Grinstein) by Deutsche Forschungsgemeinschaft, grant GR-3581/2-1, and the Jose Carreras Leukemia Foundation, grant DJCLS R 12/32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Grinstein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, S., Reister, S., Mahotka, C. et al. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin. Leukemia 29, 2208–2220 (2015). https://doi.org/10.1038/leu.2015.146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.146

This article is cited by

Search

Quick links