Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Identification of bromodomain-containing protein-4 as a novel marker and epigenetic target in mast cell leukemia

Abstract

Advanced systemic mastocytosis (SM) is a life-threatening neoplasm characterized by uncontrolled growth and accumulation of neoplastic mast cells (MCs) in various organs and a poor survival. So far, no curative treatment concept has been developed for these patients. We identified the epigenetic reader bromodomain-containing protein-4 (BRD4) as novel drug target in aggressive SM (ASM) and MC leukemia (MCL). As assessed by immunohistochemistry and PCR, neoplastic MCs expressed substantial amounts of BRD4 in ASM and MCL. The human MCL lines HMC-1 and ROSA also expressed BRD4, and their proliferation was blocked by a BRD4-specific short hairpin RNA. Correspondingly, the BRD4-targeting drug JQ1 induced dose-dependent growth inhibition and apoptosis in HMC-1 and ROSA cells, regardless of the presence or absence of KIT D816V. In addition, JQ1 suppressed the proliferation of primary neoplastic MCs obtained from patients with ASM or MCL (IC50: 100–500 nm). In drug combination experiments, midostaurin (PKC412) and all-trans retinoic acid were found to cooperate with JQ1 in producing synergistic effects on survival in HMC-1 and ROSA cells. Taken together, we have identified BRD4 as a promising drug target in advanced SM. Whether JQ1 or other BET-bromodomain inhibitors are effective in vivo in patients with advanced SM remains to be elucidated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Horny HP, Valent P . Diagnosis of mastocytosis: general histopathological aspects, morphological criteria, and immunohistochemical findings. Leuk Res 2001; 25: 543–551.

    Article  CAS  Google Scholar 

  2. Valent P, Sperr WR, Schwartz LB, Horny HP . Diagnosis and classification of mast cell proliferative disorders: delineation from immunologic diseases and non-mast cell hematopoietic neoplasms. J Allergy Clin Immunol 2004; 114: 3–11.

    Article  CAS  Google Scholar 

  3. Horny HP, Sotlar K, Valent P . Mastocytosis: state of the art. Pathobiology 2007; 74: 121–132.

    Article  CAS  Google Scholar 

  4. Metcalfe DD . Mast cells and mastocytosis. Blood 2008; 112: 946–956.

    Article  CAS  Google Scholar 

  5. Arock M, Valent P . Pathogenesis, classification and treatment of mastocytosis: state of the art in 2010 and future perspectives. Expert Rev Hematol 2010; 3: 497–516.

    Article  Google Scholar 

  6. Valent P, Horny HP, Escribano L, Longley BJ, Li CY, Schwartz LB et al. Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res 2001; 25: 603–625.

    Article  CAS  Google Scholar 

  7. Valent P, Horny HP, Li CY, Longley JB, Metcalfe DD, Parwaresch RM et al. Mastocytosis. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). WHO Classification of Tumours. IARC Press: Lyon, France, 2001, pp 291–302.

    Google Scholar 

  8. Horny HP, Akin C, Metcalfe D, Escribano L, Bennett JM, Valent P et al. Mastocytosis (mast cell disease) Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO Classification of Tumours. IARC Press: Lyon, France, 2008, 54–63.

    Google Scholar 

  9. Valent P, Akin C, Escribano L, Födinger M, Hartmann K, Brockow K et al. Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria. Eur J Clin Invest 2007; 37: 435–453.

    Article  CAS  Google Scholar 

  10. Travis WD, Li CY, Hoagland HC, Travis LB, Banks PM . Mast cell leukemia: report of a case and review of the literature. Mayo Clin Proc 1986; 61: 957–966.

    Article  CAS  Google Scholar 

  11. Sperr WR, Escribano L, Jordan JH, Schernthaner GH, Kundi M, Horny HP et al. Morphologic properties of neoplastic mast cells: delineation of stages of maturation and implication for cytological grading of mastocytosis. Leuk Res 2001; 25: 529–536.

    Article  CAS  Google Scholar 

  12. Valent P, Akin C, Sperr WR, Escribano L, Arock M, Horny HP et al. Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. Leuk Res 2003; 27: 635–641.

    Article  CAS  Google Scholar 

  13. Akin C, Metcalfe DD . Systemic mastocytosis. Annu Rev Med 2004; 55: 419–432.

    Article  CAS  Google Scholar 

  14. Lim KH, Tefferi A, Lasho TL, Finke C, Patnaik M, Butterfield JH et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood 2009; 113: 5727–5736.

    Article  CAS  Google Scholar 

  15. Valent P, Ghannadan M, Akin C, Krauth MT, Selzer E, Mayerhofer M et al. On the way to targeted therapy of mast cell neoplasms: identification of molecular targets in neoplastic mast cells and evaluation of arising treatment concepts. Eur J Clin Invest 2004; 34: 41–52.

    Article  CAS  Google Scholar 

  16. Georgin-Lavialle S, Lhermitte L, Dubreuil P, Chandesris MO, Hermine O, Damaj G . Mast cell leukemia. Blood 2013; 121: 1285–1295.

    Article  CAS  Google Scholar 

  17. Gotlib J . KIT mutations in mastocytosis and their potential as therapeutic targets. Immunol Allergy Clin North Am 2006; 26: 575–592.

    Article  Google Scholar 

  18. Ustun C, DeRemer DL, Akin C . Tyrosine kinase inhibitors in the treatment of systemic mastocytosis. Leuk Res 2011; 35: 1143–1152.

    Article  CAS  Google Scholar 

  19. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995; 92: 10560–10564.

    Article  CAS  Google Scholar 

  20. Longley BJ, Tyrrell L, Lu SZ, Ma YS, Langley K, Ding TG et al. Somatic c-kit activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 1996; 12: 312–314.

    Article  CAS  Google Scholar 

  21. Fritsche-Polanz R, Jordan JH, Feix A, Sperr WR, Sunder-Plassmann G, Valent P et al. Mutation analysis of C-KIT in patients with myelodysplastic syndromes without mastocytosis and cases of systemic mastocytosis. Br J Haematol 2001; 113: 357–364.

    Article  CAS  Google Scholar 

  22. Furitsu T, Tsujimura T, Tono T, Kitayama H, Koshimizu U, Sugahara H et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of the c-kit product. J Clin Invest 1993; 92: 1736–1744.

    Article  CAS  Google Scholar 

  23. Mayerhofer M, Gleixner KV, Hoelbl A, Florian S, Hoermann G, Aichberger KJ et al. Unique effects of KIT D816V in BaF3 cells: induction of cluster formation, histamine synthesis, and early mast cell differentiation antigens. J Immunol 2008; 180: 5466–5476.

    Article  CAS  Google Scholar 

  24. Gleixner KV, Mayerhofer M, Aichberger KJ, Derdak S, Sonneck K, Böhm A et al. The tyrosine kinase-targeting drug PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of kit: comparison with AMN107, imatinib, and cladribine (2CdA), and evaluation of cooperative drug effects. Blood 2006; 107: 752–759.

    Article  CAS  Google Scholar 

  25. Shah NP, Lee FY, Luo R, Jiang Y, Donker M, Akin C . Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 2006; 108: 286–291.

    Article  CAS  Google Scholar 

  26. Gleixner KV, Mayerhofer M, Sonneck K, Gruze A, Samorapoompichit P, Baumgartner C et al. Synergistic growth-inhibitory effects of two tyrosine kinase inhibitors, dasatinib and PKC412, on neoplastic mast cells expressing the D816V-mutated oncogenic variant of KIT. Haematologica 2007; 92: 1451–1459.

    Article  CAS  Google Scholar 

  27. Gotlib J, Berube C, Growney JD, Chen CC, George TI, Williams C et al. Activity of the tyrosine kinase inhibitor PKC412 in a patient with mast cell leukemia with the D816V KIT mutation. Blood 2005; 106: 2865–2870.

    Article  CAS  Google Scholar 

  28. Gotlib J, DeAngelo DJ, George TI, Corless CL, Linder A, Langford C et al. KIT inhibitor midostaurin exhibits a high rate of clinically meaningful and durable responses in advanced systemic mastocytosis: report of fully accrued phase II trial. Blood 2010; 116: 316.

    Google Scholar 

  29. Dawson MA, Kouzarides T, Huntly BJ . Targeting epigenetic readers in cancer. N Engl J Med 2012; 367: 647–657.

    Article  CAS  Google Scholar 

  30. Godley LA, Le Beau MM . The histone code and treatments for acute myeloid leukemia. N Engl J Med 2012; 366: 960–961.

    Article  Google Scholar 

  31. Belkina AC, Denis GV . BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 2012; 12: 465–477.

    Article  CAS  Google Scholar 

  32. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  Google Scholar 

  33. Herrmann H, Blatt K, Shi J, Gleixner KV, Cerny-Reiterer S, Müllauer L et al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget 2012; 3: 1588–1599.

    Article  Google Scholar 

  34. Sotlar K, Escribano L, Landt O, Möhrle S, Herrero S, Torrelo A et al. One-step detection of c-kit point mutations using peptide nucleic acid-mediated polymerase chain reaction clamping and hybridization probes. Am J Pathol 2003; 162: 737–746.

    Article  CAS  Google Scholar 

  35. Butterfield JH, Weiler D, Dewald G, Gleich GJ . Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res 1988; 12: 345–355.

    Article  CAS  Google Scholar 

  36. Akin C, Brockow K, D'Ambrosio C, Kirshenbaum AS, Ma Y, Longley BJ et al. Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit. Exp Hematol 2003; 31: 686–692.

    Article  CAS  Google Scholar 

  37. Saleh R, Wedeh G, Herrmann H, Bibi S, Cerny-Reiterer S, Sadovnik I et al. A new human mast cell line expressing a functional IgE receptor converts to factor-independence and tumorigenicity by KIT D816V-transfection. Blood 2014; 124: 111–120.

    Article  CAS  Google Scholar 

  38. Fellmann C, Hoffmann T, Sridhar V, Hopfgartner B, Muhar M, Roth M et al. An optimized microRNA backbone for effective single-copy RNAi. Cell Rep 2013; 5: 1704–1713.

    Article  CAS  Google Scholar 

  39. Baumgartner C, Cerny-Reiterer S, Sonneck K, Mayerhofer M, Gleixner KV, Fritz R et al. Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis: subcellular distribution and role of the transforming oncoprotein KIT D816V. Am J Pathol 2009; 175: 2416–2429.

    Article  CAS  Google Scholar 

  40. Peter B, Gleixner KV, Cerny-Reiterer S, Herrmann H, Winter V, Hadzijusufovic E et al. Polo-like kinase-1 as a novel target in neoplastic mast cells: demonstration of growth-inhibitory effects of small interfering RNA and the Polo-like kinase-1 targeting drug BI 2536. Haematologica 2011; 96: 672–680.

    Article  CAS  Google Scholar 

  41. Kneidinger M, Schmidt U, Rix U, Gleixner KV, Vales A, Baumgartner C et al. The effects of dasatinib on IgE receptor-dependent activation and histamine release in human basophils. Blood 2008; 111: 3097–3107.

    Article  CAS  Google Scholar 

  42. Krauth MT, Mirkina I, Herrmann H, Baumgartner C, Kneidinger M, Valent P . Midostaurin (PKC412) inhibits immunoglobulin E-dependent activation and mediator release in human blood basophils and mast cells. Clin Exp Allergy 2009; 39: 1711–1720.

    Article  CAS  Google Scholar 

  43. Fiskus W, Sharma S, Qi J, Valenta JA, Schaub LJ, Shah B et al. Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myeloid leukemia (AML) cells. Mol Cancer Ther 2014; 13: 1142–1154.

    Article  CAS  Google Scholar 

  44. Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 2014; 123: 1040–1050.

    Article  CAS  Google Scholar 

  45. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 2012; 120: 2843–2852.

    Article  CAS  Google Scholar 

  46. Farina A, Hattori M, Qin J, Nakatani Y, Minato N, Ozato K . Bromodomain protein Brd4 binds to GTPase-activating SPA-1, modulating its activity and subcellular localization. Mol Cell Biol 2004; 24: 9059–9069.

    Article  CAS  Google Scholar 

  47. Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG et al. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci USA 2012; 109: 6927–6932.

    Article  CAS  Google Scholar 

  48. Gleixner KV, Mayerhofer M, Cerny-Reiterer S, Hörmann G, Rix U, Bennett KL et al. KIT-D816V-independent oncogenic signaling in neoplastic cells in systemic mastocytosis: role of Lyn and Btk activation and disruption by dasatinib and bosutinib. Blood 2011; 118: 1885–1898.

    Article  CAS  Google Scholar 

  49. Wilson TM, Maric I, Simakova O, Bai Y, Chan EC, Olivares N et al. Clonal analysis of NRAS activating mutations in KIT-D816V systemic mastocytosis. Haematologica 2011; 96: 459–463.

    Article  CAS  Google Scholar 

  50. Schwaab J, Schnittger S, Sotlar K, Walz C, Fabarius A, Pfirrmann M et al. Comprehensive mutational profiling in advanced systemic mastocytosis. Blood 2013; 122: 2460–2466.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Daniela Berger and Gabriele Stefanzl for excellent technical assistance, and Günther Hofbauer and Andreas Spittler (both at the Cell Sorting Core Unit of the Medical University of Vienna) for excellent technical support and advice. This study was supported by Austrian Science Fund, SFB Grant Nos. F4611, F4704-B20 and F4710-B20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Valent.

Ethics declarations

Competing interests

JEB is a scientific founder of Tensha Therapeutics, which is developing drug-like derivatives of the JQ1 bromodomain inhibitor as cancer therapeutics, through a license from the Dana-Farber Cancer Institute. H-PH has a consultancy with and received honoraria from Novartis. PV has a consultancy with and received honoraria and research funding from Novartis. The authors declare no other conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wedeh, G., Cerny-Reiterer, S., Eisenwort, G. et al. Identification of bromodomain-containing protein-4 as a novel marker and epigenetic target in mast cell leukemia. Leukemia 29, 2230–2237 (2015). https://doi.org/10.1038/leu.2015.138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.138

This article is cited by

Search

Quick links