Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab

Abstract

Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells, including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM, we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients, we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However, we discovered, next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC, a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients), as well as CDC (56 patients). Similarly, experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly, all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia 2014; 28: 1122–1128.

    Article  CAS  Google Scholar 

  2. Kumar SK, Lee JH, Lahuerta JJ, Morgan G, Richardson PG, Crowley J et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia 2012; 26: 149–157.

    Article  CAS  Google Scholar 

  3. van de Donk NW, Lokhorst HM, Dimopoulos M, Cavo M, Morgan G, Einsele H et al. Treatment of relapsed and refractory multiple myeloma in the era of novel agents. Cancer Treat Rev 2010; 37: 266–283.

    Article  Google Scholar 

  4. van de Donk NW, Kamps S, Mutis T, Lokhorst HM . Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma. Leukemia 2012; 26: 199–213.

    Article  CAS  Google Scholar 

  5. Laubach JP, Tai YT, Richardson PG, Anderson KC . Daratumumab granted breakthrough drug status. Expert Opin Investig Drugs 2014; 23: 445–452.

    Article  CAS  Google Scholar 

  6. Dolgin E . Cancer's true breakthroughs. Nat Med 2013; 19: 660–663.

    Article  CAS  Google Scholar 

  7. Deaglio S, Mehta K, Malavasi F . Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res 2001; 25: 1–12.

    Article  CAS  Google Scholar 

  8. Malavasi F . Editorial: CD38 and retinoids: a step toward a cure. J Leukoc Biol 2011; 90: 217–219.

    Article  CAS  Google Scholar 

  9. Vaisitti T, Aydin S, Rossi D, Cottino F, Bergui L, D'Arena G et al. CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells. Leukemia 2010; 24: 958–969.

    Article  CAS  Google Scholar 

  10. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N . CD38 and chronic lymphocytic leukemia: a decade later. Blood 2011; 118: 3470–3478.

    Article  CAS  Google Scholar 

  11. de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol 2011; 186: 1840–1848.

    Article  CAS  Google Scholar 

  12. Jansen JHM, Boross P, Overdijk MB, van Bueren JJL, Parren PWHI, Leusen JHW . Daratumumab, a human CD38 antibody induces apoptosis of myeloma tumor cells via Fc receptor-mediated crosslinking. ASH Annu Meet Abstr 2012; 120: 2974.

    Google Scholar 

  13. Groen RW, Noort WA, Raymakers RA, Prins HJ, Aalders L, Hofhuis FM et al. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 2012; 120: e9–e16.

    Article  CAS  Google Scholar 

  14. Noort WA, Groen RWJ, Raymakers R, Aalders L, Hofhuis FM, van Kessel B et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of refractory patient-derived multiple myeloma cells, growing in a novel humanized mouse MM model. ASH Annu Meet Abstr 2012; 120: 940.

    Google Scholar 

  15. Lokhorst H, Laubach JP, Nahi H, Plesner T, Gimsing P, Hansson M et al. Dose-dependent efficacy of daratumumab (DARA) as monotherapy in patients with relapsed or refractory multiple myeloma (RR MM). J Clin Oncol 2014; 32: 8513.

    Article  Google Scholar 

  16. van der Veer M, de Weers M, van Kessel B, Bakker JM, Wittebol S, Parren PW et al. Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 2011; 96: 284–290.

    Article  CAS  Google Scholar 

  17. Nijhof IS, van Noort W, Lammerts van Bueren J, van Kessel B, Bakker J, Parren P et al. CD38-targeted immunochemotherapy of multiple myeloma: preclinical evidence for its combinatorial use in lenalidomide and bortezomib refractory/intolerant MM patients. Blood 2013; 122: 277.

    Google Scholar 

  18. Nijhof IS, Groen RW, Noort WA, van KB, de Jong-Korlaar RA, Bakker JM et al. Preclinical evidence for the therapeutic potential of CD38-targeted immuno-chemotherapy in multiple myeloma patients refractory to lenalidomide and bortezomib. Clin Cancer Res 2014.

  19. Plesner T, Arkenau T, Lokhorst H, Gimsing P, Krejcik J, Lemech C et al. Preliminary safety and efficacy data of daratumumab in combination with lenalidomide and dexamethasone in relapsed or refractory multiple myeloma. Blood 2013; 122: 1986.

    Google Scholar 

  20. Plesner T, Arkenau T, Lokhorst HM, Gimsing P, Krejcik J . Safety and efficacy of daratumumab with lenalidomide and dexamethasone in relapsed or relapsed, refractory multiple myeloma. Blood 2014; 124: 84.

    Article  Google Scholar 

  21. van der Veer M, de Weers M, van KB, Bakker JM, Wittebol S, Parren PW et al. The therapeutic human CD38 antibody daratumumab improves the anti-myeloma effect of newly emerging multi-drug therapies. Blood Cancer J 2011; 1: e41.

    Article  CAS  Google Scholar 

  22. Nijhof IS, de Weers M, Andre P, van Kessel B, Lokhorst HM, Parren PWHI et al. Synergistic action of the human inhibitory KIR antibody IPH2102, and the human CD38 antibody daratumumab to enhance the lysis of primary multiple myeloma (MM) cells in the bone marrow mononuclear cells (MNCs) from myeloma patients. ASH Annu Meet Abstr 2011; 118: 1865.

    Google Scholar 

  23. de Haart SJ, van de Donk NW, Minnema MC, Huang JH, Aarts-Riemens T, Bovenschen N et al. Accessory cells of the microenvironment protect multiple myeloma from T-cell cytotoxicity through cell adhesion-mediated immune resistance. Clin Cancer Res 2013; 19: 5591–5601.

    Article  CAS  Google Scholar 

  24. Drach J, McQueen T, Engel H, Andreeff M, Robertson KA, Collins SJ et al. Retinoic acid-induced expression of CD38 antigen in myeloid cells is mediated through retinoic acid receptor-alpha. Cancer Res 1994; 54: 1746–1752.

    CAS  PubMed  Google Scholar 

  25. Meyer S, Leusen JH, Boross P . Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer. MAbs 2014; 6: 1133–1144.

    Article  Google Scholar 

  26. van Meerten T, van Rijn RS, Hol S, Hagenbeek A, Ebeling SB . Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res 2006; 12: 4027–4035.

    Article  Google Scholar 

  27. Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 2001; 98: 3383–3389.

    Article  CAS  Google Scholar 

  28. Ge X, Wu L, Hu W, Fernandes S, Wang C, Li X et al. rILYd4, a human CD59 inhibitor, enhances complement-dependent cytotoxicity of ofatumumab against rituximab-resistant B-cell lymphoma cells and chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 6702–6711.

    Article  CAS  Google Scholar 

  29. Mishima Y, Sugimura N, Matsumoto-Mishima Y, Terui Y, Takeuchi K, Asai S et al. An imaging-based rapid evaluation method for complement-dependent cytotoxicity discriminated clinical response to rituximab-containing chemotherapy. Clin Cancer Res 2009; 15: 3624–3632.

    Article  CAS  Google Scholar 

  30. Suzuki Y, Yoshida T, Wang G, Togano T, Miyamoto S, Miyazaki K et al. Association of CD20 levels with clinicopathological parameters and its prognostic significance for patients with DLBCL. Ann Hematol 2012; 91: 997–1005.

    Article  CAS  Google Scholar 

  31. Johnson NA, Boyle M, Bashashati A, Leach S, Brooks-Wilson A, Sehn LH et al. Diffuse large B-cell lymphoma: reduced CD20 expression is associated with an inferior survival. Blood 2009; 113: 3773–3780.

    Article  CAS  Google Scholar 

  32. Rao SP, Sancho J, Campos-Rivera J, Boutin PM, Severy PB, Weeden T et al. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS One 2012; 7: e39416.

    Article  CAS  Google Scholar 

  33. Lipton A, Goodman L, Leitzel K, Cook J, Sperinde J, Haddad M et al. HER3, p95HER2, and HER2 protein expression levels define multiple subtypes of HER2-positive metastatic breast cancer. Breast Cancer Res Treat 2013; 141: 43–53.

    Article  CAS  Google Scholar 

  34. Lipton A, Kostler WJ, Leitzel K, Ali SM, Sperinde J, Weidler J et al. Quantitative HER2 protein levels predict outcome in fluorescence in situ hybridization-positive patients with metastatic breast cancer treated with trastuzumab. Cancer 2010; 116: 5168–5178.

    Article  CAS  Google Scholar 

  35. Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010; 116: 2286–2294.

    Article  CAS  Google Scholar 

  36. Balmer JE, Blomhoff R . Gene expression regulation by retinoic acid. J Lipid Res 2002; 43: 1773–1808.

    Article  CAS  Google Scholar 

  37. Uruno A, Noguchi N, Matsuda K, Nata K, Yoshikawa T, Chikamatsu Y et al. All-trans retinoic acid and a novel synthetic retinoid tamibarotene (Am80) differentially regulate CD38 expression in human leukemia HL-60 cells: possible involvement of protein kinase C-delta. J Leukoc Biol 2011; 90: 235–247.

    Article  CAS  Google Scholar 

  38. Kishimoto H, Hoshino S, Ohori M, Kontani K, Nishina H, Suzawa M et al. Molecular mechanism of human CD38 gene expression by retinoic acid. Identification of retinoic acid response element in the first intron. J Biol Chem 1998; 273: 15429–15434.

    Article  CAS  Google Scholar 

  39. Lewandowski D, Linassier C, Iochmann S, Degenne M, Domenech J, Colombat P et al. Phosphatidylinositol 3-kinases are involved in the all-trans retinoic acid-induced upregulation of CD38 antigen on human haematopoietic cells. Br J Haematol 2002; 118: 535–544.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N W C J van de Donk.

Ethics declarations

Competing interests

KS and PD are employees of Janssen Pharmaceuticals. HML,TM, ACM and NWCJvdD received research support from Janssen Pharmaceuticals. All other authors declared no conflicts of interest.

Additional information

Author Contributions

IN, RWJG, JvV, RdJ-K, WAN and BvK executed the experiments, analyzed and interpreted the results. KS and PD provided daratumumab. HY developed and provided the scaffolds for the mouse experiments. HML, SK and NWCJvdD provided patient materials. TM, ACMM, HML and NWCJvdD designed the study and interpreted the results. IN and NWCJvdD wrote the first draft of the manuscript. All authors helped critically review the manuscript and checked the final version of it.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nijhof, I., Groen, R., Lokhorst, H. et al. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia 29, 2039–2049 (2015). https://doi.org/10.1038/leu.2015.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.123

This article is cited by

Search

Quick links