Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL

Abstract

The functional relevance of the B-cell receptor (BCR) and the evolution of protein kinases as therapeutic targets have recently shifted the paradigm for treatment of B-cell malignancies. Inhibition of p110δ with idelalisib has shown clinical activity in chronic lymphocytic leukemia (CLL). The dynamic interplay of isoforms p110δ and p110γ in leukocytes support the hypothesis that dual blockade may provide a therapeutic benefit. IPI-145, an oral inhibitor of p110δ and p110γ isoforms, sensitizes BCR-stimulated and/or stromal co-cultured primary CLL cells to apoptosis (median 20%, n=57; P<0.0001) including samples with poor prognostic markers, unmutated IgVH (n=28) and prior treatment (n=15; P<0.0001). IPI-145 potently inhibits the CD40L/IL-2/IL-10 induced proliferation of CLL cells with an IC50 in sub-nanomolar range. A corresponding dose-responsive inhibition of pAKTSer473 is observed with an IC50 of 0.36 nM. IPI-145 diminishes the BCR-induced chemokines CCL3 and CCL4 secretion to 17% and 37%, respectively. Pre-treatment with 1 μM IPI-145 inhibits the chemotaxis toward CXCL12; reduces pseudoemperipolesis to median 50%, inferring its ability to interfere with homing capabilities of CLL cells. BCR-activated signaling proteins AKTSer473, BADSer112, ERKThr202/Tyr204 and S6Ser235/236 are mitigated by IPI-145. Importantly, for clinical development in hematological malignancies, IPI-145 is selective to CLL B cells, sparing normal B- and T-lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010; 376: 1164–1174.

    Article  CAS  Google Scholar 

  2. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014; 370: 997–1007.

    Article  CAS  Google Scholar 

  3. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  Google Scholar 

  4. Deane JA, Fruman DA . Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 2004; 22: 563–598.

    Article  CAS  Google Scholar 

  5. Fruman DA, Rommel C . PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13: 140–156.

    Article  CAS  Google Scholar 

  6. Brana I, Siu LL . Clinical development of phosphatidylinositol 3-kinase inhibitors for cancer treatment. BMC Med 2012; 10: 161.

    Article  CAS  Google Scholar 

  7. Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG . Cutting edge: differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol 2004; 173: 2236–2240.

    Article  CAS  Google Scholar 

  8. Durand CA, Hartvigsen K, Fogelstrand L, Kim S, Iritani S, Vanhaesebroeck B et al. Phosphoinositide 3-kinase p110 delta regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. J Immunol 2009; 183: 5673–5684.

    Article  CAS  Google Scholar 

  9. Okkenhaug K, Bilancio A, Farjot G, Priddle H, Sancho S, Peskett E et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 2002; 297: 1031–1034.

    CAS  Google Scholar 

  10. Ali K, Bilancio A, Thomas M, Pearce W, Gilfillan AM, Tkaczyk C et al. Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 2004; 431: 1007–1011.

    Article  CAS  Google Scholar 

  11. Okkenhaug K, Patton DT, Bilancio A, Garcon F, Rowan WC, Vanhaesebroeck B . The p110delta isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol 2006; 177: 5122–5128.

    Article  CAS  Google Scholar 

  12. Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E et al. Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 2006; 177: 6598–6602.

    Article  CAS  Google Scholar 

  13. Byrd JC, Woyach JA, Johnson AJ . Translating PI3K-delta inhibitors to the clinic in chronic lymphocytic leukemia: the story of CAL-101 (GS1101). Am Soc Clin Oncol Educ Book 2012; 32: 691–694.

    Google Scholar 

  14. Randis TM, Puri KD, Zhou H, Diacovo TG . Role of PI3Kdelta and PI3Kgamma in inflammatory arthritis and tissue localization of neutrophils. Eur J Immunol 2008; 38: 1215–1224.

    Article  CAS  Google Scholar 

  15. Barbi J, Cummings HE, Lu B, Oghumu S, Ruckle T, Rommel C et al. PI3Kgamma (PI3Kgamma) is essential for efficient induction of CXCR3 on activated T cells. Blood 2008; 112: 3048–3051.

    Article  CAS  Google Scholar 

  16. Chavakis E, Carmona G, Urbich C, Gottig S, Henschler R, Penninger JM et al. Phosphatidylinositol-3-kinase-gamma is integral to homing functions of progenitor cells. Circ Res 2008; 102: 942–949.

    Article  CAS  Google Scholar 

  17. Martin AL, Schwartz MD, Jameson SC, Shimizu Y . Selective regulation of CD8 effector T cell migration by the p110 gamma isoform of phosphatidylinositol 3-kinase. J Immunol 2008; 180: 2081–2088.

    Article  CAS  Google Scholar 

  18. Del Prete A, Vermi W, Dander E, Otero K, Barberis L, Luini W et al. Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J 2004; 23: 3505–3515.

    Article  CAS  Google Scholar 

  19. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370: 1008–1018.

    Article  CAS  Google Scholar 

  20. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 2014; 123: 3390–3397.

    Article  CAS  Google Scholar 

  21. Winkler DG, Faia KL, DiNitto JP, Ali JA, White KF, Brophy EE et al. PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol 2013; 20: 1364–1374.

    Article  CAS  Google Scholar 

  22. Okkenhaug K . Two birds with one stone: dual p110delta and p110gamma inhibition. Chem Biol 2013; 20: 1309–1310.

    Article  CAS  Google Scholar 

  23. O'Brien S, Patel M, Kahl BS, Horwitz SM, Foss FM, Porcu P et al. Duvelisib (IPI-145), a PI3K-δ,γ inhibitor, is clinically active in patients with relapsed/refractory chronic lymphocytic leukemia. Blood 2014; 124: 3334–3334.

    Google Scholar 

  24. Porcu P, Flinn I, Kahl BS, Horwitz SM, Oki Y, Byrd JC et al. Clinical activity of duvelisib (IPI-145), a phosphoinositide-3-kinase-δ,γ inhibitor, in patients previously treated with ibrutinib. Blood 2014; 124: 3335–3335.

    Article  Google Scholar 

  25. Flinn I, Oki Y, Patel M, Horwitz SM, Foss FM, Sweeney J et al. A phase 1 evaluation of duvelisib (IPI-145), a PI3K-δ,γ inhibitor, in patients with relapsed. Refractory iNHL 2014; 124: 802.

    Google Scholar 

  26. Flinn I, Jager U, Offner F, Cymbalista F, Hallek M, Caligaris-Cappio F et al. DUO: a phase 3 trial of the PI3K-{delta},{gamma} inhibitor IPI-145 versus ofatumumab in patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma. ASCO Meeting Abstracts 11 June 2014; 32: TPS7122.

    Google Scholar 

  27. Horwitz SM, Flinn I, Patel MR, Younes A, Foss FM, Oki Y et al. Preliminary safety and efficacy of IPI-145, a potent inhibitor of phosphoinositide-3-kinase-{delta},{gamma}, in patients with relapsed/refractory lymphoma. ASCO Meeting Abstracts 17 June 2013; 31: 8518.

    Google Scholar 

  28. Patel MR, Kahl BS, Horwitz SM, Younes A, Foss FM, Oki Y et al. Preliminary safety and efficacy of IPI-145, a potent inhibitor of phosphoinositide-3-kinase-{delta},{gamma}, in patients with relapsed/refractory CLL. ASCO Meeting Abstracts 17 June 2013; 31: 7070.

    Google Scholar 

  29. Balakrishnan K, Peluso M, Fu M, Rosin NY, Burger JA, Wierda WG et al. Inhibition of PI3K-δ and -γ isoforms by IPI-145 in chronic lymphocytic leukemia overcomes signals from PI3K/AKT/S6 pathway and promotes apoptosis. Blood 2013; 122: 4167–4167.

    Google Scholar 

  30. Dong S, Guinn D, Dubovsky JA, Zhong Y, Lehman A, Kutok J et al. IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells. Blood 2014; 124: 3583–3586.

    Article  CAS  Google Scholar 

  31. Balakrishnan K, Burger JA, Quiroga MP, Henneberg M, Ayres ML, Wierda WG et al. Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood 2010; 116: 1083–1091.

    Article  CAS  Google Scholar 

  32. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119: 1182–1189.

    Article  CAS  Google Scholar 

  33. Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG et al. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 2009; 114: 1029–1037.

    Article  CAS  Google Scholar 

  34. Plander M, Seegers S, Ugocsai P, Diermeier-Daucher S, Ivanyi J, Schmitz G et al. Different proliferative and survival capacity of CLL-cells in a newly established in vitro model for pseudofollicles. Leukemia 2009; 23: 2118–2128.

    Article  CAS  Google Scholar 

  35. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612.

    Article  CAS  Google Scholar 

  36. Marques M, Kumar A, Cortes I, Gonzalez-Garcia A, Hernandez C, Moreno-Ortiz MC et al. Phosphoinositide 3-kinases p110alpha and p110beta regulate cell cycle entry, exhibiting distinct activation kinetics in G1 phase. Mol Cell Biol 2008; 28: 2803–2814.

    Article  CAS  Google Scholar 

  37. Nyberg P, Salo T, Kalluri R . Tumor microenvironment and angiogenesis. Front Biosci 2008; 13: 6537–6553.

    Article  CAS  Google Scholar 

  38. Marques M, Kumar A, Poveda AM, Zuluaga S, Hernandez C, Jackson S et al. Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proc Natl Acad Sci USA 2009; 106: 7525–7530.

    Article  CAS  Google Scholar 

  39. Engelman JA, Luo J, Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    CAS  Google Scholar 

  40. Marone R, Cmiljanovic V, Giese B, Wymann MP . Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 2008; 1784: 159–185.

    Article  CAS  Google Scholar 

  41. Banham-Hall E, Clatworthy MR, Okkenhaug K . The therapeutic potential for PI3K inhibitors in autoimmune rheumatic diseases. Open Rheumatol J 2012; 6: 245–258.

    Article  CAS  Google Scholar 

  42. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010; 116: 2078–2088.

    Article  CAS  Google Scholar 

  43. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011; 117: 591–594.

    Article  CAS  Google Scholar 

  44. Barrientos JC, Furman RR, Leonard J, Flinn I, Rai KR, De Vos S et al. Update on a phase I study of the selective PI3K{delta} inhibitor idelalisib (GS-1101) in combination with rituximab and/or bendamustine in patients with relapsed or refractory CLL. ASCO Meeting Abstracts 2013; 31: 7017.

    Google Scholar 

  45. Flinn IW, Kahl BS, Leonard JP, Furman RR, Brown JR, Byrd JC et al. Idelalisib, a selective inhibitor of phosphatidylinositol 3-kinase-delta, as therapy for previously treated indolent non-Hodgkin lymphoma. Blood 2014; 123: 3406–3413.

    Article  CAS  Google Scholar 

  46. Okkenhaug K . Signaling by the phosphoinositide 3-kinase family in immune cells. Annu Rev Immunol 2013; 31: 675–704.

    Article  CAS  Google Scholar 

  47. Ali K, Camps M, Pearce WP, Ji H, Ruckle T, Kuehn N et al. Isoform-specific functions of phosphoinositide 3-kinases: p110 delta but not p110 gamma promotes optimal allergic responses in vivo. J Immunol 2008; 180: 2538–2544.

    Article  CAS  Google Scholar 

  48. Schmid MC, Avraamides CJ, Dippold HC, Franco I, Foubert P, Ellies LG et al. Receptor tyrosine kinases and TLR/IL1 Rs unexpectedly activate myeloid cell PI3K gamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell 2011; 19: 715–727.

    Article  CAS  Google Scholar 

  49. Sivina M, Hartmann E, Kipps TJ, Rassenti L, Krupnik D, Lerner S et al. CCL3 (MIP-1alpha) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood 2011; 117: 1662–1669.

    Article  CAS  Google Scholar 

  50. Schall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV . Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 1993; 177: 1821–1826.

    Article  CAS  Google Scholar 

  51. Burger JA, Quiroga MP, Hartmann E, Burkle A, Wierda WG, Keating MJ et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 2009; 113: 3050–3058.

    Article  CAS  Google Scholar 

  52. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  Google Scholar 

  53. Douglas MAK, Ted S, Allen K, Kahl BS, Horwitz SM, Flinn IW et al. Treatment with the potent PI3K-δ,γ inhibitor IPI-145 is associated with rapid decreases in specific cytokines, chemokines and matrix metalloproteinases in the serum of patients with chronic lymphocytic leukemia and indolent non-Hodgkin lymphoma. ASH Annual Meeting 2013; Abstract # 1633.

  54. Hayes GM, Busch R, Voogt J, Siah IM, Gee TA, Hellerstein MK et al. Isolation of malignant B cells from patients with chronic lymphocytic leukemia (CLL) for analysis of cell proliferation: validation of a simplified method suitable for multi-center clinical studies. Leuk Res 2010; 34: 809–815.

    Article  CAS  Google Scholar 

  55. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  Google Scholar 

  56. IPI-145 shows promise in CLL patients. Cancer Discov 2014; 4: 136.

  57. Sasaki T, Irie-Sasaki J, Jones RG, Oliveira-dos-Santos AJ, Stanford WL, Bolon B et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000; 287: 1040–1046.

    Article  CAS  Google Scholar 

  58. Os A, Burgler S, Ribes AP, Funderud A, Wang D, Thompson KM et al. Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep 2013; 4: 566–577.

    Article  CAS  Google Scholar 

  59. Pascutti MF, Jak M, Tromp JM, Derks IA, Remmerswaal EB, Thijssen R et al. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood 2013; 122: 3010–3019.

    Article  CAS  Google Scholar 

  60. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD . Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol 2001; 17: 615–675.

    Article  CAS  Google Scholar 

  61. Sawyer C, Sturge J, Bennett DC, O'Hare MJ, Allen WE, Bain J et al. Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110delta. Cancer Res 2003; 63: 1667–1675.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Benjamin Hayes for coordinating the blood sample collection and Susan C Smith for providing information on patient characteristics. This work was supported in part by an SRA from Infinity Pharmaceuticals, CLL PO1 CA81534, and K23 CA178183-01 from the National Cancer Institute. KB, WGW and VG are members of the CLL Research Consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Balakrishnan or V Gandhi.

Ethics declarations

Competing interests

KB has a sponsored research agreement with Infinity Pharmaceuticals. MP, KF and JLK are employees of Infinity Pharmaceuticals. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, K., Peluso, M., Fu, M. et al. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL. Leukemia 29, 1811–1822 (2015). https://doi.org/10.1038/leu.2015.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.105

This article is cited by

Search

Quick links