Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

MicroRNA-124 links p53 to the NF-κB pathway in B-cell lymphomas

Abstract

The contribution of microRNAs to lymphoma biology is not fully understood. In particular, it remains untested whether microRNA dysregulation could contribute to the emergence of the aggressive subset of B-cell lymphomas that coexpress MYC and BCL2. Here, we identify microRNA-124 (miR-124) as a negative regulator of MYC and BCL2 expression in B-cell lymphomas. Concordantly, stable or transient ectopic expression of miR-124 suppressed cell proliferation and survival, whereas genetic inhibition of this miRNA enhanced the fitness of these tumors. Mechanistically, the activities of miR-124 towards MYC and BCL2 intersect with both oncogenic and tumor-suppressive pathways. In respect to the former, we show that miR-124 directly targets nuclear factor-κB (NF-κB) p65, and using genetic approaches, we demonstrate that this interaction accounts for the miR-124-mediated suppression of MYC and BCL2. We also characterized miR-124 promoter region and identified a functional p53 binding site. In agreement with this finding, endogenous or ectopic expression of wild-type, but not mutant, p53 increased miR-124 levels and suppressed p65, MYC and BCL2. Our data unveil an miRNA-dependent regulatory circuitry that links p53 to the NF-κB pathway, which when disrupted in B-cell lymphoma may be associated with aberrant coexpression of MYC and BCL2 and poor prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Di Lisio L, Martinez N, Montes-Moreno S, Piris-Villaespesa M, Sanchez-Beato M, Piris MA . The role of miRNAs in the pathogenesis and diagnosis of B-cell lymphomas. Blood 2012; 120: 1782–1790.

    Article  CAS  Google Scholar 

  2. Lenz G, Staudt LM . Aggressive lymphomas. N Engl J Med 2010; 362: 1417–1429.

    Article  CAS  Google Scholar 

  3. Abramson JS, Shipp MA . Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood 2005; 106: 1164–1174.

    Article  CAS  Google Scholar 

  4. Reeder CB, Ansell SM . Novel therapeutic agents for B-cell lymphoma: developing rational combinations. Blood 2011; 117: 1453–1462.

    Article  CAS  Google Scholar 

  5. Aukema SM, Siebert R, Schuuring E, van Imhoff GW, Kluin-Nelemans HC, Boerma EJ et al. Double-hit B-cell lymphomas. Blood 2011; 117: 2319–2331.

    Article  CAS  Google Scholar 

  6. Green TM, Young KH, Visco C, Xu-Monette ZY, Orazi A, Go RS et al. Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30: 3460–3467.

    Article  CAS  Google Scholar 

  7. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30: 3452–3459.

    Article  CAS  Google Scholar 

  8. Hu S, Xu-Monette ZY, Tzankov A, Green T, Wu L, Balasubramanyam A et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. Blood 2013; 121: 4021–4031, quiz 4250.

    Article  CAS  Google Scholar 

  9. Li C, Kim SW, Rai D, Bolla AR, Adhvaryu S, Kinney MC et al. Copy number abnormalities, MYC activity, and the genetic fingerprint of normal B cells mechanistically define the microRNA profile of diffuse large B-cell lymphoma. Blood 2009; 113: 6681–6690.

    Article  CAS  Google Scholar 

  10. An L, Liu Y, Wu A, Guan Y . MicroRNA-124 inhibits migration and invasion by down-regulating ROCK1 in glioma. PLoS One 2013; 8: e69478.

    Article  CAS  Google Scholar 

  11. Lu Y, Yue X, Cui Y, Zhang J, Wang K . MicroRNA-124 suppresses growth of human hepatocellular carcinoma by targeting STAT3. Biochem Biophys Res Commun 2013; 441: 873–879.

    Article  CAS  Google Scholar 

  12. Zhang J, Lu Y, Yue X, Li H, Luo X, Wang Y et al. MiR-124 suppresses growth of human colorectal cancer by inhibiting STAT3. PLoS One 2013; 8: e70300.

    Article  CAS  Google Scholar 

  13. Wong KY, So CC, Loong F, Chung LP, Lam WW, Liang R et al. Epigenetic inactivation of the miR-124-1 in haematological malignancies. PLoS One 2011; 6: e19027.

    Article  CAS  Google Scholar 

  14. Ning BF, Ding J, Liu J, Yin C, Xu WP, Cong WM et al. Hepatocyte nuclear factor 4alpha-nuclear factor-kappaB feedback circuit modulates liver cancer progression. Hepatology 2014; 60: 1607–1619.

    Article  CAS  Google Scholar 

  15. Reinhardt HC, Schumacher B . The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet 2012; 28: 128–136.

    Article  CAS  Google Scholar 

  16. Hermeking H . MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 2012; 12: 613–626.

    Article  CAS  Google Scholar 

  17. Asuthkar S, Stepanova V, Lebedeva T, Holterman AL, Estes N, Cines DB et al. Multifunctional roles of urokinase plasminogen activator (uPA) in cancer stemness and chemoresistance of pancreatic cancer. Mol Biol Cell 2013; 24: 2620–2632.

    Article  CAS  Google Scholar 

  18. Liu X, Li F, Zhao S, Luo Y, Kang J, Zhao H et al, MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke 2013; 44: 1973–1980.

    Article  CAS  Google Scholar 

  19. Xie L, Zhang Z, Tan Z, He R, Zeng X, Xie Y et al. MicroRNA-124 inhibits proliferation and induces apoptosis by directly repressing EZH2 in gastric cancer. Mol Cell Biochem 2014; 392: 153–159.

    Article  CAS  Google Scholar 

  20. Kim SW, Rai D, Aguiar RC . Gene set enrichment analysis unveils the mechanism for the phosphodiesterase 4B control of glucocorticoid response in B-cell lymphoma. Clin Cancer Res 2011; 17: 6723–6732.

    Article  CAS  Google Scholar 

  21. Kim SW, Ramasamy K, Bouamar H, Lin AP, Jiang D, Aguiar RC . MicroRNAs miR-125a and miR-125b constitutively activate the NF-kappaB pathway by targeting the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20). Proc Natl Acad Sci USA 2012; 109: 7865–7870.

    Article  CAS  Google Scholar 

  22. Kim SW, Rai D, McKeller MR, Aguiar RC . Rational combined targeting of phosphodiesterase 4B and SYK in DLBCL. Blood 2009; 113: 6153–6160.

    Article  CAS  Google Scholar 

  23. Ortega M, Bhatnagar H, Lin AP, Wang L, Aster JC, Sill H et al. A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies. Leukemia 2014; 29: 968–976.

    Article  Google Scholar 

  24. Ott G, Rosenwald A, Campo E . Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood 2013; 122: 3884–3891.

    Article  CAS  Google Scholar 

  25. Tracey L, Perez-Rosado A, Artiga MJ, Camacho FI, Rodriguez A, Martinez N et al. Expression of the NF-kappaB targets BCL2 and BIRC5/Survivin characterizes small B-cell and aggressive B-cell lymphomas, respectively. J Pathol 2005; 206: 123–134.

    Article  CAS  Google Scholar 

  26. Duyao MP, Buckler AJ, Sonenshein GE . Interaction of an NF-kappa B-like factor with a site upstream of the c-myc promoter. Proc Natl Acad Sci USA 1990; 87: 4727–4731.

    Article  CAS  Google Scholar 

  27. el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . Definition of a consensus binding site for p53. Nat Genet 1992; 1: 45–49.

    Article  CAS  Google Scholar 

  28. Hunten S, Siemens H, Kaller M, Hermeking H . The p53/microRNA network in cancer: experimental and bioinformatics approaches. Adv Exp Med Biol 2013; 774: 77–101.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Kyung Lib Jang (Pusan National University) for the WT and MUT (R248Q) p53 constructs. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2008838) to S-WK and RCTA was funded by NCI/NIH R01-CA138747 and Veterans Administration Merit Award (I01-BX001882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-W Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D., Kim, J., Nam, J. et al. MicroRNA-124 links p53 to the NF-κB pathway in B-cell lymphomas. Leukemia 29, 1868–1874 (2015). https://doi.org/10.1038/leu.2015.101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.101

This article is cited by

Search

Quick links