Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Hhex regulates Kit to promote radioresistance of self-renewing thymocytes in Lmo2-transgenic mice

Abstract

Lmo2 is an oncogenic transcription factor that is frequently overexpressed in T-cell acute leukemias, in particular poor prognosis early T-cell precursor-like (ETP-) acute lymphoblastic leukemia (ALL). The primary effect of Lmo2 is to cause self-renewal of developing CD4CD8 (double negative, DN) T cells in the thymus, leading to serially transplantable thymocytes that eventually give rise to leukemia. These self-renewing thymocytes are intrinsically radioresistant implying that they may be a source of leukemia relapse after therapy. The homeobox transcription factor, Hhex, is highly upregulated in Lmo2-transgenic thymocytes and can phenocopy Lmo2 in inducing thymocyte self-renewal, implying that Hhex may be a key component of the Lmo2-induced self-renewal program. To test this, we conditionally deleted Hhex in the thymi of Lmo2-transgenic mice. Surprisingly, this did not prevent accumulation of DN thymocytes, nor alter the rate of overt leukemia development. However, deletion of Hhex abolished the transplantation capacity of Lmo2-transgenic thymocytes and overcame their radioresistance. We found that Hhex regulates Kit expression in Lmo2-transgenic thymocytes and that abrogation of Kit signaling phenocopied loss of Hhex in abolishing the transplantation capacity and radioresistance of these cells. Thus, targeting the Kit signaling pathway may facilitate the eradication of leukemia-initiating cells in immature T-cell leukemias in which it is expressed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  Google Scholar 

  2. Pui CH, Mullighan CG, Evans WE, Relling MV . Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012; 120: 1165–1174.

    Article  CAS  Google Scholar 

  3. Pieters R, Carroll WL . Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 2008; 55: 1–20, ix.

    Article  Google Scholar 

  4. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009; 10: 147–156.

    Article  CAS  Google Scholar 

  5. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  Google Scholar 

  6. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  7. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  Google Scholar 

  8. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011; 19: 484–497.

    Article  CAS  Google Scholar 

  9. Inukai T, Kiyokawa N, Campana D, Coustan-Smith E, Kikuchi A, Kobayashi M et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children's Cancer Study Group Study L99-15. Br J Haematol 2012; 156: 358–365.

    Article  CAS  Google Scholar 

  10. Allen A, Sireci A, Colovai A, Pinkney K, Sulis M, Bhagat G et al. Early T-cell precursor leukemia/lymphoma in adults and children. Leuk Res 2013; 37: 1027–1034.

    Article  Google Scholar 

  11. McCormack MP, Shields BJ, Jackson JT, Nasa C, Shi W, Slater NJ et al. Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL. Blood 2013; 122: 2093–2103.

    Article  CAS  Google Scholar 

  12. Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH . The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 1991; 88: 4367–4371.

    Article  CAS  Google Scholar 

  13. Baer R . TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol 1993; 4: 341–347.

    CAS  PubMed  Google Scholar 

  14. Curtis DJ, McCormack MP . The molecular basis of Lmo2-induced T-cell acute lymphoblastic leukemia. Clin Cancer Res 2010; 16: 5618–5623.

    Article  CAS  Google Scholar 

  15. Matthews JM, Lester K, Joseph S, Curtis DJ . LIM-domain-only proteins in cancer. Nat Rev Cancer 2013; 13: 111–122.

    Article  CAS  Google Scholar 

  16. Larson RC, Fisch P, Larson TA, Lavenir I, Langford T, King G et al. T cell tumours of disparate phenotype in mice transgenic for Rbtn-2. Oncogene 1994; 9: 3675–3681.

    CAS  PubMed  Google Scholar 

  17. McCormack MP, Young LF, Vasudevan S, de Graaf CA, Codrington R, Rabbitts TH et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science 2010; 327: 879–883.

    Article  CAS  Google Scholar 

  18. Hoang T . Of mice and men: how an oncogene transgresses the limits and predisposes to T cell acute lymphoblastic leukemia. Sci Transl Med 2010; 2: 21ps10.

    Article  Google Scholar 

  19. Homminga I, Pieters R, Meijerink JP . NKL homeobox genes in leukemia. Leukemia 2012; 26: 572–581.

    Article  CAS  Google Scholar 

  20. Crompton MR, Bartlett TJ, MacGregor AD, Manfioletti G, Buratti E, Giancotti V et al. Identification of a novel vertebrate homeobox gene expressed in haematopoietic cells. Nucleic Acids Res 1992; 20: 5661–5667.

    Article  CAS  Google Scholar 

  21. Bedford FK, Ashworth A, Enver T, Wiedemann LM . HEX: a novel homeobox gene expressed during haematopoiesis and conserved between mouse and human. Nucleic Acids Res 1993; 21: 1245–1249.

    Article  CAS  Google Scholar 

  22. George A, Morse HC 3rd, Justice MJ . The homeobox gene Hex induces T-cell-derived lymphomas when overexpressed in hematopoietic precursor cells. Oncogene 2003; 22: 6764–6773.

    Article  CAS  Google Scholar 

  23. Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, Kaestner KH et al. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 2007; 308: 355–367.

    Article  CAS  Google Scholar 

  24. Hallaq H, Pinter E, Enciso J, McGrath J, Zeiss C, Brueckner M et al. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development 2004; 131: 5197–5209.

    Article  CAS  Google Scholar 

  25. Nocka K, Tan JC, Chiu E, Chu TY, Ray P, Traktman P et al. Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W37, Wv, W41 and W. EMBO J 1990; 9: 1805–1813.

    Article  CAS  Google Scholar 

  26. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  Google Scholar 

  27. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 2001; 15: 763–774.

    Article  CAS  Google Scholar 

  28. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 2001; 1: 4.

    Article  CAS  Google Scholar 

  29. Seibler J, Zevnik B, Kuter-Luks B, Andreas S, Kern H, Hennek T et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res 2003; 31: e12.

    Article  Google Scholar 

  30. Barbier V, Nowlan B, Levesque JP, Winkler IG . Flow cytometry analysis of cell cycling and proliferation in mouse hematopoietic stem and progenitor cells. Methods Mol Biol 2012; 844: 31–43.

    Article  CAS  Google Scholar 

  31. Masuda K, Kakugawa K, Nakayama T, Minato N, Katsura Y, Kawamoto H . T cell lineage determination precedes the initiation of TCR beta gene rearrangement. J Immunol 2007; 179: 3699–3706.

    Article  CAS  Google Scholar 

  32. Cleveland SM, Smith S, Tripathi R, Mathias EM, Goodings C, Elliott N et al. Lmo2 induces hematopoietic stem cell-like features in T-cell progenitor cells prior to leukemia. Stem Cells 2013; 31: 882–894.

    Article  CAS  Google Scholar 

  33. Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hebert J, Perreault C et al. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 2010; 24: 1093–1105.

    Article  CAS  Google Scholar 

  34. Tatarek J, Cullion K, Ashworth T, Gerstein R, Aster JC, Kelliher MA . Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. Blood 2011; 118: 1579–1590.

    Article  CAS  Google Scholar 

  35. Rodewald HR, Kretzschmar K, Swat W, Takeda S . Intrathymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo. Immunity 1995; 3: 313–319.

    Article  CAS  Google Scholar 

  36. Kent D, Copley M, Benz C, Dykstra B, Bowie M, Eaves C . Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway. Clin Cancer Res 2008; 14: 1926–1930.

    Article  CAS  Google Scholar 

  37. Mody R, Li S, Dover DC, Sallan S, Leisenring W, Oeffinger KC et al. Twenty-five-year follow-up among survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. Blood 2008; 111: 5515–5523.

    Article  CAS  Google Scholar 

  38. Smith S, Tripathi R, Goodings C, Cleveland S, Mathias E, Hardaway JA et al. LIM Domain Only-2 (LMO2) induces t-cell leukemia by two distinct pathways. PLoS ONE 2014; 9: e85883.

    Article  Google Scholar 

  39. Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V et al. Cell competition is a tumour suppressor mechanism in the thymus. Nature 2014; 509: 465–470.

    Article  CAS  Google Scholar 

  40. Treanor LM, Zhou S, Janke L, Churchman ML, Ma Z, Lu T et al. Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med 2014; 211: 701–713.

    Article  CAS  Google Scholar 

  41. Treanor LM, Volanakis EJ, Zhou S, Lu T, Sherr CJ, Sorrentino BP . Functional interactions between Lmo2, the Arf tumor suppressor, and Notch1 in murine T-cell malignancies. Blood 2011; 117: 5453–5462.

    Article  CAS  Google Scholar 

  42. Paietta E, Ferrando AA, Neuberg D, Bennett JM, Racevskis J, Lazarus H et al. Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood 2004; 104: 558–560.

    Article  CAS  Google Scholar 

  43. Lhermitte L, Ben Abdelali R, Villarese P, Bedjaoui N, Guillemot V, Trinquand A et al. Receptor kinase profiles identify a rationale for multitarget kinase inhibition in immature T-ALL. Leukemia 2013; 27: 305–314.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank WEHI Bioservices for animal husbandry, Prof. Doug Hilton for providing the KitWv mice, Hesham Abdulla for technical assistance and Prof. Richard Lock and Dr Seong-Lin Khaw for discussions. This work was supported by a Program Grant (1016647 to WSA), Project Grants (628386 and 1003391 to MPM), Fellowship (1058344 to WSA) and an Independent Research Institute Infrastructure Support (IRIIS) Scheme from the Australian National Health and Medical Research Council (NHMRC), grants-in-aid from the Cancer Council of Victoria and the Leukemia Foundation of Australia (MPM), a Future Fellowship from the Australian Research Council (MPM), the Australian Cancer Research Foundation and a Victorian State Government Operational Infrastructure Grant.

Author Contributions

MPM and BJS designed research, performed research, analyzed data and wrote the manuscript; CN and RA performed research and analyzed data; CWB designed research and provided critical reagents. WSA designed research, analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M P McCormack.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shields, B., Alserihi, R., Nasa, C. et al. Hhex regulates Kit to promote radioresistance of self-renewing thymocytes in Lmo2-transgenic mice. Leukemia 29, 927–938 (2015). https://doi.org/10.1038/leu.2014.292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.292

This article is cited by

Search

Quick links