Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013; 369: 2379–2390.

    Article  CAS  PubMed  Google Scholar 

  2. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013; 369: 2391–2405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine RL, Gilliland DG . Myeloproliferative disorders. Blood 2008; 112: 2190–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, Marsden JT et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005; 366: 1945–1953.

    Article  CAS  PubMed  Google Scholar 

  5. Beer PA, Campbell PJ, Scott LM, Bench AJ, Erber WN, Bareford D et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood 2008; 112: 141–149.

    Article  CAS  PubMed  Google Scholar 

  6. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  7. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  8. Chi J, Nicolaou KA, Nicolaidou V . Calreticulin gene exon 9 frameshift mutations in patients with thrombocytosis. Leukemia 2013; 28: 1152–1154.

    Article  PubMed  Google Scholar 

  9. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood 2014; 123: 2220–2228.

    Article  CAS  PubMed  Google Scholar 

  10. Maffioli M, Genoni A, Caramazza D, Mora B, Bussini A, Merli M et al. Looking for CALR mutations in familial myeloproliferative neoplasms. Leukemia 2014; 28: 1357–1360.

    Article  CAS  PubMed  Google Scholar 

  11. Rumi E, Harutyunyan AS, Pietra D, Milosevic JD, Casetti IC, Bellini M et al. CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood 2014; 123: 2416–2419.

    Article  CAS  PubMed  Google Scholar 

  12. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia 2014; 28: 1472–1477.

    Article  CAS  PubMed  Google Scholar 

  13. Tefferi A, Wassie EA, Guglielmelli P, Gangat N, Belachew AA, Lasho TL et al. Type 1 vs type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol 2014; 89: E121–E124.

    Article  CAS  PubMed  Google Scholar 

  14. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel J, Brunel JP, Mermel CH et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 2014; 123: e123–e133.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F Fava, C Legrand, I Teyssandier, F Lorre, R Tang and Laboratoire Commun de Biologie et Génétique Moléculaires, AP-HP, hôpital Saint-Antoine, Drs D Carp, J Dewulf, S Frederic, L Heuberger, I Leduc, F Lefrere, E Legac, E Ronez, J Roussi, C Salanoubat, J-L Vaerman, M Van Butsel, MD Venon, Professor D Latinne and Professor O Legrand for molecular and clinical biology support. This work was supported by grants from la Ligue contre le Cancer (XC, IP, ES WV and OB, équipe labellisée 2012), from the Agence Nationale de la Recherche (IP, WV ANR Thrombocytosis and GERMPN) and the Laurette Fugain association (WV). XC and OB are supported respectively by grants from the University Paris Diderot and from the ANR. We are grateful for generous support to S.N.C. from the F.R.S.-F.N.R.S., Belgium, the Salus Sanguinis Foundation, the Action de Recherche Concertée ARC10/15-027, the Fondation contre le Cancer, Brussels, and the PAI Program Belgian Medical Genetics Initiative Project P7/43 (BeMG) IAP, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Marzac.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabagnols, X., Defour, J., Ugo, V. et al. Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia 29, 249–252 (2015). https://doi.org/10.1038/leu.2014.270

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.270

Search

Quick links