Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing

Abstract

To decipher the mutational pattern of primary CNS lymphoma (PCNSL), we performed whole-exome sequencing to a median coverage of 103 × followed by mutation verification in 9 PCNSL and validation using Sanger sequencing in 22 PCNSL. We identified a median of 202 (range: 139–251) potentially somatic single nucleotide variants (SNV) and 14 small indels (range: 7–22) with potentially protein-changing features per PCNSL. Mutations affected the B-cell receptor, toll-like receptor, and NF-κB and genes involved in chromatin structure and modifications, cell-cycle regulation, and immune recognition. A median of 22.2% (range: 20.0–24.7%) of somatic SNVs in 9 PCNSL overlaps with the RGYW motif targeted by somatic hypermutation (SHM); a median of 7.9% (range: 6.2–12.6%) affects its hotspot position suggesting a major impact of SHM on PCNSL pathogenesis. In addition to the well-known targets of aberrant SHM (aSHM) (PIM1), our data suggest new targets of aSHM (KLHL14, OSBPL10, and SUSD2). Among the four most frequently mutated genes was ODZ4 showing protein-changing mutations in 4/9 PCNSL. Together with mutations affecting CSMD2, CSMD3, and PTPRD, these findings may suggest that alterations in genes having a role in CNS development may facilitate diffuse large B-cell lymphoma manifestation in the CNS. This may point to intriguing mechanisms of CNS tropism in PCNSL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Deckert M, Engert A, Brück W, Ferreri AJ, Finke J, Illerhaus G et al. Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma. Leukemia 2011; 25: 1797–1807.

    Article  CAS  PubMed  Google Scholar 

  2. Deckert M, Montesinos-Rongen M, Brunn A, Siebert R . Systems biology of primary CNS lymphoma: from genetic aberrations to modeling in mice. Acta Neuropathol 2014; 127: 175–188.

    Article  CAS  PubMed  Google Scholar 

  3. Montesinos-Rongen M, Siebert R, Deckert M . Primary lymphoma of the central nervous system: just DLBCL or not? Blood 2009; 113: 7–10.

    Article  CAS  PubMed  Google Scholar 

  4. Montesinos-Rongen M, Brunn A, Bentink S, Basso K, Lim WK, Klapper W et al. Gene expression profiling suggests primary central nervous system lymphomas to be derived from a late germinal center B cell. Leukemia 2008; 22: 400–405.

    Article  CAS  PubMed  Google Scholar 

  5. Cady FM, O'Neill BP, Law ME, Decker PA, Kurtz DM, Giannini C et al. Del(6)(q22) and BCL6 rearrangements in primary CNS lymphoma are indicators of an aggressive clinical course. J Clin Oncol 2008; 26: 4814–4819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Montesinos-Rongen M, Akasaka T, Zühlke-Jenisch R, Schaller C, Van Roost D, Wiestler OD et al. Molecular characterization of BCL6 breakpoints in primary diffuse large B-cell lymphomas of the central nervous system identifies GAPD as novel translocation partner. Brain Pathol 2003; 13: 534–538.

    Article  CAS  PubMed  Google Scholar 

  7. Montesinos-Rongen M, Zühlke-Jenisch R, Gesk S, Martin-Subero JI, Schaller C, Van Roost D et al. Interphase cytogenetic analysis of lymphoma-associated chromosomal breakpoints in primary diffuse large B-cell lymphomas of the central nervous system. J Neuropathol Exp Neurol 2002; 61: 926–933.

    Article  CAS  PubMed  Google Scholar 

  8. Montesinos-Rongen M, Schmitz R, Courts C, Stenzel W, Bechtel D, Niedobitek G et al. Absence of immunoglobulin class switch in primary lymphomas of the central nervous system. Am J Pathol 2005; 166: 1773–1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Courts C, Montesinos-Rongen M, Brunn A, Bug S, Siemer D, Hans V et al. Recurrent inactivation of the PRDM1 gene in primary central nervous system lymphoma. J Neuropathol Exp Neurol 2008; 67: 720–727.

    Article  CAS  PubMed  Google Scholar 

  10. Montesinos-Rongen M, Küppers R, Schlüter D, Spieker T, Van Roost D, Schaller C et al. Primary central nervous system lymphomas are derived from germinal-center B cells and show a preferential usage of the V4-34 gene segment. Am J Pathol 1999; 155: 2077–2086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thompsett AR, Ellison DW, Stevenson FK, Zhu D . V(H) gene sequences from primary central nervous system lymphomas indicate derivation from highly mutated germinal center B cells with ongoing mutational activity. Blood 1999; 94: 1738–1746.

    CAS  PubMed  Google Scholar 

  12. Montesinos-Rongen M, Van Roost D, Schaller C, Wiestler OD, Deckert M . Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 2004; 103: 1869–1875.

    Article  CAS  PubMed  Google Scholar 

  13. Montesinos-Rongen M, Schäfer E, Siebert R, Deckert M . Genes regulating the B cell receptor pathway are recurrently mutated in primary central nervous system lymphoma. Acta Neuropathol 2012; 124: 905–906.

    Article  PubMed  Google Scholar 

  14. Montesinos-Rongen M, Godlewska E, Brunn A, Wiestler OD, Siebert R, Deckert M . Activating L265P mutations of the MYD88 gene are common in primary central nervous system lymphoma. Acta Neuropathol 2011; 122: 791–792.

    Article  PubMed  Google Scholar 

  15. Montesinos-Rongen M, Schmitz R, Brunn A, Gesk S, Richter J, Hong K et al. Mutations of CARD11 but not TNFAIP3 may activate the NF-kappaB pathway in primary CNS lymphoma. Acta Neuropathol 2010; 120: 529–535.

    Article  CAS  PubMed  Google Scholar 

  16. Schwindt H, Vater I, Kreuz M, Montesinos-Rongen M, Brunn A, Richter J et al. Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma. Leukemia 2009; 23: 1875–1884.

    Article  CAS  PubMed  Google Scholar 

  17. Courts C, Montesinos-Rongen M, Martin-Subero JI, Brunn A, Siemer D, Zühlke-Jenisch R et al. Transcriptional profiling of the nuclear factor-kappaB pathway identifies a subgroup of primary lymphoma of the central nervous system with low BCL10 expression. J Neuropathol Exp Neurol 2007; 66: 230–237.

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A et al. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res 2012; 18: 5203–5211.

    Article  CAS  PubMed  Google Scholar 

  19. Riemersma SA, Jordanova ES, Schop RF, Philippo K, Looijenga LH, Schuuring E et al. Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immune-privileged sites. Blood 2000; 96: 3569–3577.

    CAS  PubMed  Google Scholar 

  20. Rubenstein JL, Fridlyand J, Shen A, Aldape K, Ginzinger D, Batchelor T et al. Gene expression and angiotropism in primary CNS lymphoma. Blood 2006; 107: 3716–3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tun HW, Personett D, Baskerville KA, Menke DM, Jaeckle KA, Kreinest P et al. Pathway analysis of primary central nervous system lymphoma. Blood 2008; 111: 3200–3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  23. Jima DD, Zhang J, Jacobs C, Richards KL, Dunphy CH, Choi WW et al. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. Blood 2010; 116: e118–e127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 2012; 109: 3879–3884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 2013; 122: 1256–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011; 43: 830–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deckert M, Paulus W . Malignant Lymphomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO Classification of Tumors Pathology & Genetics of Tumours of the Nervous System4th edn.IRAC: Lyon, 2007; pp 188–192.

    Google Scholar 

  30. Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013; 45: 927–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li H, Durbin R . Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rimmer A, Mathieson I, Lunter G, McVean G . Platypus: An Integrated Variant Caller 2012 [cited 2014 January 25, 2014]; Available from www.well.ox.ac.uk/platypus.

  34. Wang K, Li M, Hakonarson H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010; 38: e164.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hansen RS, Thomas S, Sandstrom R, Canfield TK, Thurman RE, Weaver M et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci USA 2010; 107: 139–144.

    Article  CAS  PubMed  Google Scholar 

  36. Floratos A, Smith K, Ji Z, Watkinson J, Califano A . geWorkbench: an open source platform for integrative genomics. Bioinformatics 2010; 26: 1779–1780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brunn A, Nagel I, Montesinos-Rongen M, Klapper W, Vater I, Paulus W et al. Frequent triple-hit expression of MYC, BCL2, and BCL6 in primary lymphoma of the central nervous system and absence of a favorable MYC(low)BCL2 (low) subgroup may underlie the inferior prognosis as compared to systemic diffuse large B cell lymphomas. Acta Neuropathol 2013; 126: 603–605.

    Article  PubMed  Google Scholar 

  38. Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D, Korshunov A et al. Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 2013; 125: 659–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412: 341–346.

    Article  CAS  PubMed  Google Scholar 

  40. Sima J, Gilbert DM . Complex correlations: replication timing and mutational landscapes during cancer and genome evolution. Curr Opin Genet Dev 2014; 25C: 93–100.

    Article  Google Scholar 

  41. Bruno A, Boisselier B, Labreche K, Marie Y, Polivka M, Jouvet A et al. Mutational analysis of primary central nervous system lymphoma. Oncotarget 2014; 5: 5065–5075.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Braggio E, McPhail ER, Macon W, Lopes MB, Schiff D, Law M et al. Primary central nervous system lymphomas: a validation study of array-based comparative genomic hybridization in formalin-fixed paraffin-embedded tumor specimens. Clin Cancer Res 2011; 17: 4245–4253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sung CO, Kim SC, 3569- S, Karube K, Shin HJ, Nam DH et al. Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma. Blood 2011; 117: 1291–1300.

    Article  PubMed  Google Scholar 

  44. Mottok A, Renne C, Seifert M, Oppermann E, Bechstein W, Hansmann ML et al. Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood 2009; 114: 4503–4506.

    Article  CAS  PubMed  Google Scholar 

  45. Brunn A, Utermöhlen O, Mihelcic M, Sanchez-Ruiz M, Carstov M, Blau T et al. Differential effects of CXCR4-CXCL12- and CXCR7-CXCL12-mediated immune reactions on murine P0106-125 -induced experimental autoimmune neuritis. Neuropathol Appl Neurobiol 2013; 39: 772–787.

    Article  CAS  PubMed  Google Scholar 

  46. Horn H, Ziepert M, Becher C, Barth TFE, Bernd H-W, Feller AC et al. MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. Blood 2013; 121: 2253–2263.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol 2012; 30: 3452–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010; 463: 88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Booman M, Douwes J, Glas AM, Riemersma SA, Jordanova ES, Kok K et al. Mechanisms and effects of loss of human leukocyte antigen class II expression in immune-privileged site-associated B-cell lymphoma. Clin Cancer Res 2006; 12: 2698–2705.

    Article  CAS  PubMed  Google Scholar 

  50. Booman M, Szuhai K, Rosenwald A, Hartmann E, Kluin-Nelemans H, de Jong D et al. Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J Pathol 2008; 216: 209–217.

    Article  CAS  PubMed  Google Scholar 

  51. Jordanova ES, Philippo K, Giphart MJ, Schuuring E, Kluin PM . Mutations in the HLA class II genes leading to loss of expression of HLA-DR and HLA-DQ in diffuse large B-cell lymphoma. Immunogenetics 2003; 55: 203–209.

    Article  CAS  PubMed  Google Scholar 

  52. Kenzelmann-Broz D, Tucker RP, Leachman NT, Chiquet-Ehrismann R . The expression of teneurin-4 in the avian embryo: potential roles in patterning of the limb and nervous system. Int J Dev Biol 2010; 54: 1509–1516.

    Article  PubMed  Google Scholar 

  53. Suzuki N, Fukushi M, Kosaki K, Doyle AD, de Vega S, Yoshizaki K et al. Teneurin-4 is a novel regulator of oligodendrocyte differentiation and myelination of small-diameter axons in the CNS. J Neurosci 2012; 32: 11586–11599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Psychiatric GCBDWG. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  Google Scholar 

  55. Arregui CO, Balsamo J, Lilien J . Regulation of signaling by protein-tyrosine phosphatases: potential roles in the nervous system. Neurochem Res 2000; 25: 95–105.

    Article  CAS  PubMed  Google Scholar 

  56. Sun QL, Wang J, Bookman RJ, Bixby JL . Growth cone steering by receptor tyrosine phosphatase delta defines a distinct class of guidance cue. Mol Cell Neurosci 2000; 16: 686–695.

    Article  CAS  PubMed  Google Scholar 

  57. Boeva V, Jouannet S, Daveau R, Combaret V, Pierre-Eugène C, Cazes A et al. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis. PLoS One 2013; 8: e72182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483: 589–593.

    Article  CAS  PubMed  Google Scholar 

  59. Shimizu A, Asakawa S, Sasaki T, Yamazaki S, Yamagata H, Kudoh J et al. A novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains: a candidate gene for benign adult familial myoclonic epilepsy on human chromosome 8q23.3-q24.1. Biochem Biophys Res Commun 2003; 309: 143–154.

    Article  CAS  PubMed  Google Scholar 

  60. Vinatzer U, Gollinger M, Mullauer L, Raderer M, Chott A, Streubel B . Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res 2008; 14: 6426–6431.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all our technicians. This study has been supported by the Deutsche Krebshilfe (grant nos. 109471, 109472), ICGC MMML-Seq project/German Ministry for Education and Science (BMBF Grant no. 01KU1002 A-J), and the Jackstädt foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Deckert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vater, I., Montesinos-Rongen, M., Schlesner, M. et al. The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. Leukemia 29, 677–685 (2015). https://doi.org/10.1038/leu.2014.264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.264

This article is cited by

Search

Quick links