Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Concise Review
  • Published:

Mouse models of NPM1-mutated acute myeloid leukemia: biological and clinical implications

Abstract

Acute myeloid leukemia (AML) carrying nucleophosmin (NPM1) mutations displays distinct biological and clinical features that led to its inclusion as a provisional disease entity in the 2008 World Health Organization (WHO) classification of myeloid neoplasms. Studies of the molecular mechanisms underlying the pathogenesis of NPM1-mutated AML have benefited greatly from several mouse models of this leukemia developed over the past few years. Immunocompromised mice xenografted with NPM1-mutated AML served as the first valuable tool for defining the biology of the disease in vivo. Subsequently, genetically engineered mouse models of the NPM1 mutation, including transgenic and knock-in alleles, allowed the generation of mice with a constant genotype and a reproducible phenotype. These models have been critical for investigating the nature of the molecular effects of these mutations, defining the function of leukemic stem cells in NPM1-mutated AML, identifying chemoresistant preleukemic hemopoietic stem cells and unraveling the key molecular events that cooperate with NPM1 mutations to induce AML in vivo. Moreover, they can serve as a platform for the discovery and validation of new antileukemic drugs in vivo. Advances derived from the analysis of these mouse models promise to greatly accelerate the development of new molecularly targeted therapies for patients with NPM1-mutated AML.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cancer Genome Atlas Research Network. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  2. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al. Mutational landscape and significance across 12 major cancer types. Nature 2013; 502 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005; 352 254–266.

    Article  CAS  PubMed  Google Scholar 

  4. Falini B, Nicoletti I, Martelli MF, Mecucci C . Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2007; 109 874–885.

    Article  CAS  PubMed  Google Scholar 

  5. Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): is it a distinct entity? Blood 2011; 117: 1109–1120.

    Article  CAS  PubMed  Google Scholar 

  6. Falini B, Martelli MP, Mecucci C, Liso A, Bolli N, Bigerna B et al. Cytoplasmic mutated nucleophosmin is stable in primary leukemic cells and in a xenotransplant model of NPMc+ acute myeloid leukemia in SCID mice. Haematologica 2008; 93: 775–779.

    Article  PubMed  Google Scholar 

  7. Meloni G, Mancini M, Gianfelici V, Martelli MP, Foa R, Falini B . Late relapse of acute myeloid leukemia with mutated NPM1 after eight years: evidence of NPM1 mutation stability. Haematologica 2009; 94: 298–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liso A, Bogliolo A, Freschi V, Martelli MP, Pileri SA, Santodirocco M et al. In human genome, generation of a nuclear export signal through duplication appears unique to nucleophosmin (NPM1) mutations and is restricted to AML. Leukemia 2008; 22: 1285–1289.

    Article  CAS  PubMed  Google Scholar 

  9. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia 2014; 28: 78–87.

    Article  CAS  PubMed  Google Scholar 

  10. Grossmann V, Haferlach C, Weissmann S, Roller A, Schindela S, Poetzinger F et al. The molecular profile of adult T-cell acute lymphoblastic leukemia: mutations in RUNX1 and DNMT3A are associated with poor prognosis in T-ALL. Genes Chromosomes Cancer 2013; 52: 410–422.

    Article  CAS  PubMed  Google Scholar 

  11. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009; 360: 765–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Falini B, Mecucci C, Saglio G, Lo Coco F, Diverio D, Brown P et al. NPM1 mutations and cytoplasmic nucleophosmin are mutually exclusive of recurrent genetic abnormalities: a comparative analysis of 2562 patients with acute myeloid leukemia. Haematologica 2008; 93: 439–442.

    Article  CAS  PubMed  Google Scholar 

  13. Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood 2005; 106: 899–902.

    Article  CAS  PubMed  Google Scholar 

  14. Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA 2008; 105: 3945–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haferlach C, Mecucci C, Schnittger S, Kohlmann A, Mancini M, Cuneo A et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 2009; 114: 3024–3032.

    Article  CAS  PubMed  Google Scholar 

  16. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  17. Arber DA, Brunning R.D, Le Beau M.M, Falini B, Vardiman J.W, Porwit A, Thiele J, Bloomfield C.D . Acute myeloid leukaemia with recurrent genetic abnormalities. WHO Classification of tumours of haematopoietic and lymphoid tissues. I.A.R.C. International Agency for Research on Cancer: Lyon, 2008. 110–123.

    Google Scholar 

  18. Quentmeier H, Martelli MP, Dirks WG, Bolli N, Liso A, Macleod RA et al. Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin. Leukemia 2005; 19: 1760–1767.

    Article  CAS  PubMed  Google Scholar 

  19. Falini B, Bolli N, Shan J, Martelli MP, Liso A, Pucciarini A et al. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood 2006; 107: 4514–4523.

    Article  CAS  PubMed  Google Scholar 

  20. Falini B, Bolli N, Liso A, Martelli MP, Mannucci R, Pileri S et al. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: molecular basis and clinical implications. Leukemia 2009; 23: 1731–1743.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng K, Grisendi S, Clohessy JG, Majid S, Bernardi R, Sportoletti P et al. The leukemia-associated cytoplasmic nucleophosmin mutant is an oncogene with paradoxical functions: Arf inactivation and induction of cellular senescence. Oncogene 2007; 26: 7391–7400.

    Article  CAS  PubMed  Google Scholar 

  22. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  23. Martelli MP, Pettirossi V, Thiede C, Bonifacio E, Mezzasoma F, Cecchini D et al. CD34+ cells from AML with mutated NPM1 harbor cytoplasmic mutated nucleophosmin and generate leukemia in immunocompromised mice. Blood 2010; 116: 3907–3922.

    Article  CAS  PubMed  Google Scholar 

  24. Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(−) fraction. Blood 2010; 115: 1976–1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Tansl Med 2012; 4: 149ra18.

    Google Scholar 

  26. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 328–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R . Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA 2014; 111: 2548–2553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng K, Sportoletti P, Ito K, Clohessy JG, Teruya-Feldstein J, Kutok JL et al. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model. Blood 2010; 115: 3341–3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bolli N, Payne EM, Grabher C, Lee JS, Johnston AB, Falini B et al. Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 2010; 115: 3329–3340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolli N, De Marco MF, Martelli MP, Bigerna B, Pucciarini A, Rossi R et al. A dose-dependent tug of war involving the NPM1 leukaemic mutant, nucleophosmin, and ARF. Leukemia 2009; 23: 501–509.

    Article  CAS  PubMed  Google Scholar 

  31. Khanna-Gupta A, Abayasekara N, Levine M, Sun H, Virgilio M, Nia N et al. Up-regulation of translation eukaryotic initiation factor 4E in nucleophosmin 1 haploinsufficient cells results in changes in CCAAT enhancer-binding protein alpha activity: implications in myelodysplastic syndrome and acute myeloid leukemia. J Biol Chem 2012; 287: 32728–32737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sportoletti P, Grisendi S, Majid SM, Cheng K, Clohessy JG, Viale A et al. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood 2008; 111: 3859–3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sportoletti P, Varasano E, Rossi R, Bereshchenko O, Cecchini D, Gionfriddo I et al. The human NPM1 mutation A perturbs megakaryopoiesis in a conditional mouse model. Blood 2013; 121: 3447–3458.

    Article  CAS  PubMed  Google Scholar 

  34. Mallardo M, Caronno A, Pruneri G, Raviele PR, Viale A, Pelicci PG et al. NPMc+ and FLT3_ITD mutations cooperate in inducing acute leukaemia in a novel mouse model. Leukemia 2013; 27: 2248–2251.

    Article  CAS  PubMed  Google Scholar 

  35. Pasqualucci L, Liso A, Martelli MP, Bolli N, Pacini R, Tabarrini A et al. Mutated nucleophosmin detects clonal multilineage involvement in acute myeloid leukemia: Impact on WHO classification. Blood 2006; 108: 4146–4155.

    Article  CAS  PubMed  Google Scholar 

  36. Falini B, Macijewski K, Weiss T, Bacher U, Schnittger S, Kern W et al. Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1). Blood 2010; 115: 3776–3786.

    Article  CAS  PubMed  Google Scholar 

  37. Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006; 103: 5078–5083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet 2011; 43: 470–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chou SH, Ko BS, Chiou JS, Hsu YC, Tsai MH, Chiu YC et al. A knock-in Npm1 mutation in mice results in myeloproliferation and implies a perturbation in hematopoietic microenvironment. PloS one 2012; 7: e49769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005; 115: 2159–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao L, Melenhorst JJ, Alemu L, Kirby M, Anderson S, Kench M et al. KIT with D816 mutations cooperates with CBFB-MYH11 for leukemogenesis in mice. Blood 2012; 119: 1511–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gilliland DG . Hematologic malignancies. Curr Opin Hematol 2001; 8: 189–191.

    Article  CAS  PubMed  Google Scholar 

  43. Murati A, Brecqueville M, Devillier R, Mozziconacci MJ, Gelsi-Boyer V, Birnbaum D . Myeloid malignancies: mutations, models and management. BMC cancer 2012; 12: 304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martelli MP, Sportoletti P, Tiacci E, Martelli MF, Falini B . Mutational landscape of AML with normal cytogenetics: biological and clinical implications. Blood reviews 2013; 27: 13–22.

    Article  CAS  PubMed  Google Scholar 

  45. Mupo A, Celani L, Dovey O, Cooper JL, Grove C, Rad R et al. A powerful molecular synergy between mutant Nucleophosmin and Flt3-ITD drives acute myeloid leukemia in mice. Leukemia 2013; 27: 1917–1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rau R, Magoon D, Greenblatt S, Li L, Annesley C, Duffield AS et al. NPMc+ cooperates with Flt3/ITD mutations to cause acute leukemia recapitulating human disease. Exp Hematol. 2013; 42: 101–113.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  PubMed  Google Scholar 

  48. Dovey O, Grove C, Cooper J, Mupo A, Wright P, Bradley A et al. A study of the leukemogenic interaction between mutant NPM1 and NRASG12D in conditional knock-in mice. Haematologica 2013; 98((s1)):464, abstract S1126.

    Google Scholar 

  49. Grisendi S, Mecucci C, Falini B, Pandolfi PP . Nucleophosmin and cancer. Nat Rev Cancer 2006; 6: 493–505.

    Article  CAS  PubMed  Google Scholar 

  50. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005; 437: 147–153.

    Article  CAS  PubMed  Google Scholar 

  51. Falini B, Gionfriddo I, Cecchetti F, Ballanti S, Pettirossi V, Martelli MP . Acute myeloid leukemia with mutated nucleophosmin (NPM1): any hope for a targeted therapy?. Blood Rev. 2011; 25: 247–254.

    Article  CAS  PubMed  Google Scholar 

  52. Mutka SC, Yang WQ, Dong SD, Ward SL, Craig DA, Timmermans PB et al. Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res. 2009; 69: 510–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Falini B, Martelli MP . NPM1-mutated AML: targeting by disassembling. Blood 2011; 118: 2936–2938.

    Article  CAS  PubMed  Google Scholar 

  54. Emmott E, Hiscox JA . Nucleolar targeting: the hub of the matter. EMBO Rep. 2009; 10: 231–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chan PK, Chan FY . A study of correlation between NPM-translocation and apoptosis in cells induced by daunomycin. Biochem Pharmacol 1999; 57: 1265–1273.

    Article  CAS  PubMed  Google Scholar 

  56. Rubbi CP, Milner J . Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 2003; 22: 6068–6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 2010; 285: 12416–12425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chiarella S, De Cola A, Scaglione GL, Carletti E, Graziano V, Barcaroli D et al. Nucleophosmin mutations alter its nucleolar localization by impairing G-quadruplex binding at ribosomal DNA. Nucleic Acids Res 2013; 41: 3228–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chi HT, Vu HA, Iwasaki R, Nagamura F, Tojo A, Watanabe T et al. Detection of exon 12 type A mutation of NPM1 gene in IMS-M2 cell line. Leuk Res 2010; 34: 261–262.

    Article  CAS  PubMed  Google Scholar 

  60. Schlenk RF, Dohner K, Kneba M, Gotze K, Hartmann F, Del Valle F et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 2009; 94: 54–60.

    Article  CAS  PubMed  Google Scholar 

  61. Burnett AK, Hills RK, Green C, Jenkinson S, Koo K, Patel Y et al. The impact on outcome of the addition of all-trans retinoic acid to intensive chemotherapy in younger patients with nonacute promyelocytic acute myeloid leukemia: overall results and results in genotypic subgroups defined by mutations in NPM1, FLT3, and CEBPA. Blood 2010; 115: 948–956.

    Article  CAS  PubMed  Google Scholar 

  62. Pratz KW, Luger SM . Will FLT3 inhibitors fulfill their promise in acute meyloid leukemia?. Curr Opin Hematol 2014; 21: 72–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dawson MA, Gudgin EJ, Horton SJ, Giotopoulos G, Meduri E, Robson S et al. Recurrent mutations, including NPM1c, activate a BRD4-dependent core transcriptional program in acute myeloid leukemia. Leukemia 2014; 28: 311–320.

    Article  CAS  PubMed  Google Scholar 

  64. Wermke M, Thiede C, Kiani A, Ehninger G, Bornhauser M, Platzbecker U . Successful treatment of molecular relapse in NPM1-positive AML using 5-azacytidine. Leukemia 2010; 24: 236–237.

    Article  CAS  PubMed  Google Scholar 

  65. Chaturvedi A, Araujo Cruz MM, Jyotsana N, Sharma A, Yun H, Gorlich K et al. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 2013; 122: 2877–2887.

    Article  CAS  PubMed  Google Scholar 

  66. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E et al. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 2013; 340: 622–626.

    Article  CAS  PubMed  Google Scholar 

  67. Schneider V, Zhang L, Bullinger L, Rojewski M, Hofmann S, Wiesneth M et al. Leukemic stem cells of acute myeloid leukemia patients carrying NPM1 mutation are candidates for targeted immunotherapy. Leukemia 2014; 28: 1759–1762.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Associazione Italiana Ricerca Cancro (AIRC) (IG 2013 n.14595), the Associazione Umbra contro le Leucemie e i Linfomi (AULL) and Italian Minister of Health, Project ‘Ricerca Finalizzata 2008’ (Grant n. RF-UMB-2008-1198396). GV is funded by a Welcome Trust Senior Fellowship in Clinical Science. AM is funded by a Kay Kendall Leukaemia Fund project grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P Sportoletti or B Falini.

Ethics declarations

Competing interests

B. Falini applied for a patent on the clinical use of NPM1 mutants. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sportoletti, P., Varasano, E., Rossi, R. et al. Mouse models of NPM1-mutated acute myeloid leukemia: biological and clinical implications. Leukemia 29, 269–278 (2015). https://doi.org/10.1038/leu.2014.257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.257

This article is cited by

Search

Quick links