Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Augmented efficacy with the combination of blockade of the Notch-1 pathway, bortezomib and romidepsin in a murine MT-1 adult T-cell leukemia model

Abstract

Adult T-cell leukemia (ATL) is an aggressive malignancy caused by human T-cell lymphotropic virus-1. There is no accepted curative therapy for ATL. We have reported that certain ATL patients have increased Notch-1 signaling along with constitutive activation of the nuclear factor-κB pathway. Physical and functional interaction between these two pathways provides the rationale to combine the γ-secretase inhibitor compound E with the proteasome inhibitor bortezomib. Moreover, romidepsin, a histone deacetylase inhibitor, has demonstrated major antitumor action in leukemia/lymphoma. In this study, we investigated the therapeutic efficacy of the single agents and the combination of these agents in a murine model of human ATL, the MT-1 model. Single and double agents inhibited tumor growth as monitored by tumor size (P<0.05), and prolonged survival of leukemia-bearing mice (P<0.05) compared with the control group. The combination of three agents significantly enhanced the antitumor efficacy as assessed by tumor size, tumor markers in the serum (human soluble interleukin-2 receptor-α and β2-microglobulin) and survival of the MT-1 tumor-bearing mice, compared with all other treatment groups (P<0.05). Improved therapeutic efficacy obtained by combining compound E, bortezomib and romidepsin supports a clinical trial of this combination in the treatment of ATL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI et al. Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA 1981; 78: 6476–6480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC . Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 1980; 77: 7415–7419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamada Y, Tomonaga M, Fukuda H, Hanada S, Utsunomiya A, Tara M et al. A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. Br J Haematol 2001; 113: 375–382.

    Article  CAS  PubMed  Google Scholar 

  4. Vacca A, Felli MP, Palermo R, Di Mario G, Calce A, Di Giovine M et al. Notch3 and pre-TCR interaction unveils distinct NF-kappaB pathways in T-cell development and leukemia. EMBO J 2006; 25: 1000–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson JJ, Kovall RA . Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 2006; 124: 985–996.

    Article  CAS  PubMed  Google Scholar 

  6. Radtke F, Schweisguth F, Pear W . The Notch ‘gospel’. EMBO Rep 2005; 6: 1120–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  8. Pancewicz J, Taylor JM, Datta A, Baydoun HH, Waldmann TA, Hermine O et al. Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci USA 2010; 107: 16619–16624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karin M, Greten FR . NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–759.

    Article  CAS  PubMed  Google Scholar 

  10. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    Article  CAS  PubMed  Google Scholar 

  11. Portis T, Harding JC, Ratner L . The contribution of NF-kappaB activity to spontaneous proliferation and resistance to apoptosis in human T-cell leukemia virus type 1 Tax-induced tumors. Blood 2001; 98: 1200–1208.

    Article  CAS  PubMed  Google Scholar 

  12. Peloponese J, Yeung M, Jeang K-T . Modulation of nuclear factor-kB by human T-cell leukemia virus type 1 tax protein: Implications for oncogenesis and inflammation. Immunol Res 2006; 34: 1–12.

    Article  CAS  PubMed  Google Scholar 

  13. Horie R . NF-kappaB in pathogenesis and treatment of adult T-cell leukemia/lymphoma. Int Rev Immunol 2007; 26: 269–281.

    Article  CAS  PubMed  Google Scholar 

  14. Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194–202.

    Article  CAS  PubMed  Google Scholar 

  15. Piekarz RL, Frye R, Prince HM, Kirschbaum MH, Zain J, Allen SL et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 2011; 117: 5827–5834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marks PA, Richon VM, Rifkind RA . Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 2000; 92 (15): 1210–1216.

    Article  CAS  PubMed  Google Scholar 

  17. Mori N, Matsuda T, Tadano M, Kinjo T, Yamada Y, Tsukasaki K et al. Apoptosis induced by the histone deacetylase inhibitor FR901228 in human T-cell leukemia virus type 1-infected T-cell line and primary adult T-cell leukemia cells. J Virol 2004; 78: 4582–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shimoyama M . Diagnostic criteria and classification of clinical subtypes of adult T-cell leukemia-lymphoma. Br J Haematol 1991; 79: 428–437.

    Article  CAS  PubMed  Google Scholar 

  19. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 2007; 204: 1825–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Agnusdei V, Minuzzo S, Frasson C, Grassi A, Axelrod F, Satyal S et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia 2014; 28: 278–288.

    Article  CAS  PubMed  Google Scholar 

  22. Zuurbier L, Homminga I, Calvert V, te Winkel ML, Buijs-Gladdines JG, Kooi C et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia 2010; 24: 2014–2022.

    Article  CAS  PubMed  Google Scholar 

  23. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwarzer R, Dörken B, Jundt F . Notch is an essential upstream regulator of NF-κB and is relevant for survival of Hodgkin and Reed–Sternberg cells. Leukemia 2012; 26: 806–813.

    Article  CAS  PubMed  Google Scholar 

  25. Sanda T, Li X, Gutierrez A, Ahn Y, Neuberg DS, O'Neil J et al. Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 2010; 115: 1735–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grabher C, von Boehmer H, Look AT . Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6:0 347–359.

    Article  Google Scholar 

  27. Osipo C, Golde TE, Osborne BA, Miele LA . Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Invest 2008; 88: 11–17.

    Article  CAS  PubMed  Google Scholar 

  28. Oswald F, Liptay S, Adler G, Schmid RM . NF-κB2 is a putative target gene of activated NOTCH-1 via RBP-Jκ. Mol Cell Biol 1998; 18: 2077–2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bellavia D, Campese AF, Alesse E, Vacca A, Felli MP, Balestri A et al. Constitutive activation of NF-kB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J 2000; 19: 3337–3348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guan E, Wang J, Laborda J, Norcross M, Baeuerle PA, Hoffman T . T cell leukemia-associated human Notch/translocation-associated Notch homologue has IkB-like activity and physically interacts with nuclear factor-kB proteins in T cells. J Exp Med 1996; 183: 2025–2032.

    Article  CAS  PubMed  Google Scholar 

  31. Hironaka N, Mochida K, Mori N, Maeda M, Yamamoto N, Yamaoka S . Tax-independent constitutive IkappaB kinase activation in adult T-cell leukemia cells. Neoplasia 2004; 6: 266–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2007; 13: 70–77.

    Article  CAS  PubMed  Google Scholar 

  33. Satou Y, Nosaka K, Koya Y, Yasunaga JI, Toyokuni S, Matsuoka M . Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro. Leukemia 2004; 18: 1357–1363.

    Article  CAS  PubMed  Google Scholar 

  34. Chen F, Pisklakova A, Li M, Baz R, Sullivan DM, Nefedova Y . Gamma-secretase inhibitor enhances the cytotoxic effect of bortezomib in multiple myeloma. Cell Oncol (Dordr) 2011; 34: 545–551.

    Article  CAS  Google Scholar 

  35. Kikuchi J, Wada T, Shimizu R, Izumi T, Akutsu M, Mitsunaga K et al. Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma. Blood 2010; 116: 406–417.

    Article  CAS  PubMed  Google Scholar 

  36. Harrison SJ, Quach H, Link E, Seymour JF, Ritchie DS, Ruell S et al. A high rate of durable responses with romidepsin, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma. Blood 2011; 118: 6274–6283.

    Article  CAS  PubMed  Google Scholar 

  37. Paoluzzi L, Scotto L, Marchi E, Zain J, Seshan VE, O'Connor OA . Romidepsin and belinostat synergize the antineoplastic effect of bortezomib in Mantle cell lymphoma. Clin Cancer Res 2010; 16: 554–565.

    Article  CAS  PubMed  Google Scholar 

  38. Dai Y, Chen S, Kramer LB, Funk VL, Dent P, Grant S . Interactions between bortezomib and romidepsin and belinostat in chronic lymphocytic leukemia cells. Clin Cancer Res 2008; 14: 549–558.

    Article  CAS  PubMed  Google Scholar 

  39. LaVoie MJ, Selkoe DJ . The notch ligands, Jagged and Delta, are sequentially processed by α-secretase and presenilin/γ-secretase and release signaling fragments. J Biol Chem 2003; 278: 34427–34437.

    Article  CAS  PubMed  Google Scholar 

  40. Bland CE, Kimberly P, Rand MD . Notch-induced proteolysis and nuclear localization of the Delta ligand. J Biol Chem 2003; 278: 13607–13610.

    Article  CAS  PubMed  Google Scholar 

  41. Parks AL, Klueg KM, Stout JR, Muskavitch MA . Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 2000; 127: 1373–1385.

    CAS  PubMed  Google Scholar 

  42. Yuan Y, Lu X, Chen X, Shao HW, Huang SL Jagged 1 contributes to the drug resistance of Jurkat cells in contact with human umbilical cord-derived mesenchymal stem cells. Onco Lett 2013; 6: 1000–1016.

    Article  CAS  Google Scholar 

  43. Jundt F, Anagnostopoulos I, Förster R, Mathas S, Stein H, Dörken B . Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 2002; 99: 3398–4303.

    Article  CAS  PubMed  Google Scholar 

  44. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005; 65: 2353–2363.

    Article  CAS  PubMed  Google Scholar 

  45. Nwabo Kamdje AH, Mosna F, Bifari F, Lisi V, Bassi G, Malpeli G et al. Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood 2011; 118: 380–389.

    Article  PubMed  Google Scholar 

  46. Chiang MY, Xu L, Shestova O, Histen G, L'heureux S, Romany C et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J Clin Invest 2008; 118: 3181–3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of Center for Cancer Research, NCI, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T A Waldmann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Petrus, M., Ju, W. et al. Augmented efficacy with the combination of blockade of the Notch-1 pathway, bortezomib and romidepsin in a murine MT-1 adult T-cell leukemia model. Leukemia 29, 556–566 (2015). https://doi.org/10.1038/leu.2014.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.241

This article is cited by

Search

Quick links