Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy

A Corrigendum to this article was published on 06 April 2016

Abstract

Identification of physiologically relevant peptide vaccine targets calls for the direct analysis of the entirety of naturally presented human leukocyte antigen (HLA) ligands, termed the HLA ligandome. In this study, we implemented this direct approach using immunoprecipitation and mass spectrometry to define acute myeloid leukemia (AML)-associated peptide vaccine targets. Mapping the HLA class I ligandomes of 15 AML patients and 35 healthy controls, more than 25 000 different naturally presented HLA ligands were identified. Target prioritization based on AML exclusivity and high presentation frequency in the AML cohort identified a panel of 132 LiTAAs (ligandome-derived tumor-associated antigens), and 341 corresponding HLA ligands (LiTAPs (ligandome-derived tumor-associated peptides)) represented subset independently in >20% of AML patients. Functional characterization of LiTAPs by interferon-γ ELISPOT (Enzyme-Linked ImmunoSpot) and intracellular cytokine staining confirmed AML-specific CD8+ T-cell recognition. Of note, our platform identified HLA ligands representing several established AML-associated antigens (e.g. NPM1, MAGED1, PRTN3, MPO, WT1), but found 80% of them to be also represented in healthy control samples. Mapping of HLA class II ligandomes provided additional CD4+ T-cell epitopes and potentially synergistic embedded HLA ligands, allowing for complementation of a multipeptide vaccine for the immunotherapy of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U . Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 2004; 18: 165–166.

    Article  CAS  PubMed  Google Scholar 

  2. Feyerabend S, Stevanovic S, Gouttefangeas C, Wernet D, Hennenlotter J, Bedke J et al. Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer. Prostate 2009; 69: 917–927.

    Article  CAS  PubMed  Google Scholar 

  3. Schmitt M, Schmitt A, Rojewski MT, Chen J, Giannopoulos K, Fei F et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 2008; 111: 1357–1365.

    Article  CAS  PubMed  Google Scholar 

  4. Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004; 101: 13885–13890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rezvani K, Yong AS, Mielke S, Savani BN, Musse L, Superata J et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 2008; 111: 236–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012; 18: 1254–1261.

    Article  CAS  PubMed  Google Scholar 

  7. Tallman MS, Gilliland DG, Rowe JM . Drug therapy for acute myeloid leukemia. Blood 2005; 106: 1154–1163.

    Article  CAS  PubMed  Google Scholar 

  8. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    Article  CAS  PubMed  Google Scholar 

  9. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  PubMed  Google Scholar 

  10. Ravandi F, Burnett AK, Agura ED, Kantarjian HM . Progress in the treatment of acute myeloid leukemia. Cancer 2007; 110: 1900–1910.

    Article  CAS  PubMed  Google Scholar 

  11. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med 1979; 300: 1068–1073.

    Article  CAS  PubMed  Google Scholar 

  12. Bleakley M, Riddell SR . Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol 2011; 89: 396–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brouwer RE, van der Heiden P, Schreuder GM, Mulder A, Datema G, Anholts JD et al. Loss or downregulation of HLA class I expression at the allelic level in acute leukemia is infrequent but functionally relevant, and can be restored by interferon. Hum Immunol 2002; 63: 200–210.

    Article  CAS  PubMed  Google Scholar 

  14. Vollmer M, Li L, Schmitt A, Greiner J, Reinhardt P, Ringhoffer M et al. Expression of human leucocyte antigens and co-stimulatory molecules on blasts of patients with acute myeloid leukaemia. Br J Haematol 2003; 120: 1000–1008.

    Article  CAS  PubMed  Google Scholar 

  15. Anguille S, Van Tendeloo VF, Berneman ZN . Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia 2012; 26: 2186–2196.

    Article  CAS  PubMed  Google Scholar 

  16. Goswami M, Hensel N, Smith BD, Prince GT, Qin L, Levitsky HI et al. Expression of putative targets of immunotherapy in acute myeloid leukemia and healthy tissues. Leukemia 2014; 28: 1167–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cobbold M, De La Pena H, Norris A, Polefrone JM, Qian J, English AM et al. MHC class I-associated phosphopeptides are the targets of memory-like immunity in leukemia. Sci Transl Med 2013; 5: 203ra125.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Van Driessche A, Berneman ZN, Van Tendeloo VF . Active specific immunotherapy targeting the Wilms' tumor protein 1 (WT1) for patients with hematological malignancies and solid tumors: lessons from early clinical trials. Oncologist 2012; 17: 250–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Z, Oka Y, Tsuboi A, Fujiki F, Harada Y, Nakajima H et al. Identification of a WT1 protein-derived peptide, WT1, as a HLA-A 0206-restricted, WT1-specific CTL epitope. Microbiol Immunol 2008; 52: 551–558.

    Article  CAS  PubMed  Google Scholar 

  20. Ma Q, Wang C, Jones D, Quintanilla KE, Li D, Wang Y et al. Adoptive transfer of PR1 cytotoxic T lymphocytes associated with reduced leukemia burden in a mouse acute myeloid leukemia xenograft model. Cytotherapy 2010; 12: 1056–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Greiner J, Schmitt A, Giannopoulos K, Rojewski MT, Gotz M, Funk I et al. High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica 2010; 95: 1191–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Tendeloo VF, Van de Velde A, Van Driessche A, Cools N, Anguille S, Ladell K et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA 2010; 107: 13824–13829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qazilbash MH, Rios R, Lu SJ, Giralt S . Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood 2004; 104: 77A.

    Google Scholar 

  24. Qazilbash MH, Thall PF, Wang X, Rios RL, Lu S . PR1 vaccine elicited immunological response after hematopoietic stem cell transplantation is associated with better clinical response and event-free survival. Blood 2007; 110: 178A.

    Google Scholar 

  25. Stickel JS, Weinzierl AO, Hillen N, Drews O, Schuler MM, Hennenlotter J et al. HLA ligand profiles of primary renal cell carcinoma maintained in metastases. Cancer Immunol Immunother 2009; 58: 1407–1417.

    Article  CAS  PubMed  Google Scholar 

  26. Weinzierl AO, Lemmel C, Schoor O, Muller M, Kruger T, Wernet D et al. Distorted relation between mRNA copy number and corresponding major histocompatibility complex ligand density on the cell surface. Mol Cell Proteomics 2007; 6: 102–113.

    Article  CAS  PubMed  Google Scholar 

  27. Neumann A, Horzer H, Hillen N, Klingel K, Schmid-Horch B, Buhring HJ et al. Identification of HLA ligands and T-cell epitopes for immunotherapy of lung cancer. Cancer Immunol Immunother 2013; 62: 1485–1497.

    Article  CAS  PubMed  Google Scholar 

  28. Neidert MC, Schoor O, Trautwein C, Trautwein N, Christ L, Melms A et al. Natural HLA class I ligands from glioblastoma: extending the options for immunotherapy. J Neurooncol 2013; 111: 285–294.

    Article  CAS  PubMed  Google Scholar 

  29. Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG . Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290–296.

    Article  CAS  PubMed  Google Scholar 

  30. Kowalewski DJ, Stevanovic S . Biochemical large-scale identification of MHC class I ligands. Methods Mol Biol 2013; 960: 145–157.

    Article  CAS  PubMed  Google Scholar 

  31. Kall L, Canterbury JD, Weston J, Noble WS, MacCoss MJ . Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 2007; 4: 923–925.

    Article  PubMed  Google Scholar 

  32. Sturm T, Leinders-Zufall T, Macek B, Walzer M, Jung S, Pommerl B et al. Mouse urinary peptides provide a molecular basis for genotype discrimination by nasal sensory neurons. Nat Commun 2013; 4: 1616.

    Article  PubMed  Google Scholar 

  33. Widenmeyer M, Griesemann H, Stevanovic S, Feyerabend S, Klein R, Attig S et al. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients. Int J Cancer 2012; 131: 140–149.

    Article  CAS  PubMed  Google Scholar 

  34. Britten CM, Gouttefangeas C, Welters MJ, Pawelec G, Koch S, Ottensmeier C et al. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother 2008; 57: 289–302.

    Article  CAS  PubMed  Google Scholar 

  35. Mellman I, Coukos G, Dranoff G . Cancer immunotherapy comes of age. Nature 2011; 480: 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wetzler M, Baer MR, Stewart SJ, Donohue K, Ford L, Stewart CC et al. HLA class I antigen cell surface expression is preserved on acute myeloid leukemia blasts at diagnosis and at relapse. Leukemia 2001; 15: 128–133.

    Article  CAS  PubMed  Google Scholar 

  37. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  38. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15: 5323–5337.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hardwick N, Buchan S, Ingram W, Khan G, Vittes G, Rice J et al. An analogue peptide from the Cancer/Testis antigen PASD1 induces CD8+ T cell responses against naturally processed peptide. Cancer Immun 2013; 13: 16.

    PubMed  PubMed Central  Google Scholar 

  41. Graf C, Heidel F, Tenzer S, Radsak MP, Solem FK, Britten CM et al. A neoepitope generated by an FLT3 internal tandem duplication (FLT3-ITD) is recognized by leukemia-reactive autologous CD8+ T cells. Blood 2007; 109: 2985–2988.

    CAS  PubMed  Google Scholar 

  42. Beatty GL, Smith JS, Reshef R, Patel KP, Colligon TA, Vance BA et al. Functional unresponsiveness and replicative senescence of myeloid leukemia antigen-specific CD8+ T cells after allogeneic stem cell transplantation. Clin Cancer Res 2009; 15: 4944–4953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ochi T, Fujiwara H, Suemori K, Azuma T, Yakushijin Y, Hato T et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. Blood 2009; 113: 66–74.

    Article  CAS  PubMed  Google Scholar 

  44. Ochsenreither S, Majeti R, Schmitt T, Stirewalt D, Keilholz U, Loeb KR et al. Cyclin-A1 represents a new immunogenic targetable antigen expressed in acute myeloid leukemia stem cells with characteristics of a cancer-testis antigen. Blood 2012; 119: 5492–5501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Greiner J, Ono Y, Hofmann S, Schmitt A, Mehring E, Gotz M et al. Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia. Blood 2012; 120: 1282–1289.

    Article  CAS  PubMed  Google Scholar 

  46. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ . T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 1998; 393: 480–483.

    Article  CAS  PubMed  Google Scholar 

  47. Sun JC, Williams MA, Bevan MJ . CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 2004; 5: 927–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP . CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421: 852–856.

    Article  CAS  PubMed  Google Scholar 

  49. Mumberg D, Monach PA, Wanderling S, Philip M, Toledano AY, Schreiber RD et al. CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. Proc Natl Acad Sci USA 1999; 96: 8633–8638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qin ZH, Blankenstein T . CD4(+) T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 2000; 12: 677–686.

    Article  CAS  PubMed  Google Scholar 

  51. Muller-Hermelink N, Braumuller H, Pichler B, Wieder T, Mailhammer R, Schaak K et al. TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 2008; 13: 507–518.

    Article  PubMed  Google Scholar 

  52. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 2007; 109: 5346–5354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M et al. Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 2013; 19: 4508–4520.

    Article  CAS  PubMed  Google Scholar 

  54. Melief CJ . 'License to kill' reflects joint action of CD4 and CD8 T cells. Clin Cancer Res 2013; 19: 4295–4296.

    Article  CAS  PubMed  Google Scholar 

  55. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn. IARC Press: Lyon, France, 2008.

    Google Scholar 

Download references

Acknowledgements

We thank Patricia Hrstic, Beate Pömmerl, Claudia Falkenburger, Katharina Graf and Nicole Zuschke for excellent technical support and Mathias Walzer for expert programming of in-house analytical scripts. This work was supported by the Deutsche Forschungsgesellschaft (DFG, SFB 685), the Fortüne Program of the University of Tübingen (Fortüne Number 2032-0-0) and the German Cancer Consortium (DKTK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Stickel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Supplementary Table S1 (DOC 36 kb)

Supplementary Table S2 (DOC 90 kb)

Supplementary Table S3 (DOC 680 kb)

Supplementary Table S4 (DOC 163 kb)

Supplementary Table S5 (DOC 71 kb)

Supplementary Table S5 (DOC 192 kb)

Supplementary Figure S1 (JPG 3080 kb)

Supplementary Figure S2 (JPG 1860 kb)

Supplementary Figure S3 (JPG 1678 kb)

Supplementary Figure S4 (JPG 1712 kb)

Supplementary Figure S5 (JPG 1770 kb)

Supplementary Figure S6 (JPG 1779 kb)

Supplementary Figure S7 (JPG 1726 kb)

Supplementary Figure S8 (JPG 1741 kb)

Supplementary Figure S9 (JPG 1574 kb)

Supplementary Figure S10 (JPG 1637 kb)

Supplementary Figure S11 (JPG 1834 kb)

Supplementary Figure S12 (JPG 1823 kb)

Supplementary Figure S13 (JPG 1561 kb)

Supplementary Figure S14 (JPG 1645 kb)

Supplementary Figure S15 (JPG 1715 kb)

Supplementary Figure S16 (JPG 1772 kb)

Supplementary Figure S17 (JPG 1810 kb)

Supplementary Figure S18 (JPG 1669 kb)

Supplementary Figure S19 (JPG 2043 kb)

Supplementary Figure S20 (JPG 1853 kb)

Supplementary Figure S21 (JPG 1733 kb)

Supplementary Figure S22 (JPG 1740 kb)

Supplementary Figure S23 (JPG 1678 kb)

Supplementary Figure S24 (JPG 1675 kb)

Supplementary Figure S25 (JPG 1785 kb)

Supplementary Figure S26 (JPG 1755 kb)

Supplementary Figure S27 (JPG 2003 kb)

Supplementary Figure 28 (JPG 1902 kb)

Supplementary Figure 29 (JPG 1801 kb)

Supplementary Figure 30 (JPG 1942 kb)

Supplementary Figure 31 (JPG 1891 kb)

Supplementary Figure 32 (JPG 1939 kb)

Supplementary Figure 33 (JPG 1726 kb)

Supplementary Figure 34 (JPG 1749 kb)

Supplementary Figure 35 (JPG 1833 kb)

Supplementary Figure 36 (JPG 1901 kb)

Supplementary Figure 37 (JPG 1805 kb)

Supplementary Figure 38 (JPG 1584 kb)

Supplementary Figure 39 (JPG 1830 kb)

Supplementary Figure 40 (JPG 1696 kb)

Supplementary Figure 41 (JPG 1779 kb)

Supplementary Figure 42 (JPG 1830 kb)

Supplementary Figure 43 (JPG 1628 kb)

Supplementary Figure 44 (JPG 1854 kb)

Supplementary Figure 45 (JPG 1841 kb)

Supplementary Figure 46 (JPG 1883 kb)

Supplementary Figure 47 (JPG 1732 kb)

Supplementary Figure 48 (JPG 1940 kb)

Supplementary Figure 49 (JPG 1717 kb)

Supplementary Figure 50 (JPG 1794 kb)

Supplementary Figure 51 (JPG 1618 kb)

Supplementary Figure 52 (JPG 4706 kb)

Supplementary Figure 53 (JPG 1624 kb)

Supplementary Figure 54 (JPG 1672 kb)

Supplementary Figure 55 (JPG 1619 kb)

Supplementary Figure 56 (JPG 1659 kb)

Supplementary Figure 57 (JPG 1684 kb)

Supplementary Figure 58 (JPG 1914 kb)

Supplementary Figure 59 (JPG 2003 kb)

Supplementary Figure 60 (JPG 1881 kb)

Supplementary Figure 61 (JPG 1915 kb)

Supplementary Figure 62 (JPG 1944 kb)

Supplementary Figure 63 (JPG 1727 kb)

Supplementary Figure 64 (JPG 1781 kb)

Supplementary Figure 65 (JPG 1744 kb)

Supplementary Figure 66 (JPG 1762 kb)

Supplementary Figure 67 (JPG 1983 kb)

Supplementary Figure 68 (JPG 2070 kb)

Supplementary Figure 69 (JPG 1909 kb)

Supplementary Figure 70 (JPG 1887 kb)

Supplementary Figure 71 (JPG 1963 kb)

Supplementary Figure 72 (JPG 1902 kb)

Supplementary Figure 73 (JPG 1879 kb)

Supplementary Figure 74 (JPG 1718 kb)

Supplementary Figure 75 (JPG 1827 kb)

Supplementary Figure 76 (JPG 1998 kb)

Supplementary Figure 77 (JPG 1712 kb)

Supplementary Figure 78 (JPG 1775 kb)

Supplementary Figure 79 (JPG 1625 kb)

Supplementary Figure 80 (JPG 1683 kb)

Supplementary Figure 81 (JPG 1708 kb)

Supplementary Figure 82 (JPG 1800 kb)

Supplementary Figure 83 (JPG 1789 kb)

Supplementary Figure 84 (JPG 1847 kb)

Supplementary Figure 85 (JPG 1864 kb)

Supplementary Figure 86 (JPG 1860 kb)

Supplementary Figure 87 (JPG 1837 kb)

Supplementary Figure 88 (JPG 1812 kb)

Supplementary Figure 89 (JPG 1896 kb)

Supplementary Figure 90 (JPG 1793 kb)

Supplementary Figure 91 (JPG 1942 kb)

Supplementary Figure 92 (JPG 1732 kb)

Supplementary Figure 93 (JPG 1906 kb)

Supplementary Figure94 (JPG 2017 kb)

Supplementary Figure95 (JPG 1783 kb)

Supplementary Figure96 (JPG 1916 kb)

Supplementary Figure97 (JPG 2038 kb)

Supplementary Figure98 (JPG 2027 kb)

Supplementary Figure99 (JPG 1885 kb)

Supplementary Figure S100 (JPG 1528 kb)

Supplementary Figure S101 (JPG 1702 kb)

Supplementary Figure S102 (JPG 1910 kb)

Supplementary Figure S103 (JPG 2036 kb)

Supplementary Figure S104 (JPG 1587 kb)

Supplementary Figure S105 (JPG 1884 kb)

Supplementary Figure S106 (JPG 1877 kb)

Supplementary Figure S107 (JPG 1709 kb)

Supplementary Figure S108 (JPG 1769 kb)

Supplementary Figure S109 (JPG 1770 kb)

Supplementary Figure S110 (JPG 1767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlin, C., Kowalewski, D., Schuster, H. et al. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 29, 647–659 (2015). https://doi.org/10.1038/leu.2014.233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.233

This article is cited by

Search

Quick links