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Discovery and development of the Polo-like kinase inhibitor
volasertib in cancer therapy
BT Gjertsen1,2,4 and P Schöffski3,4

Owing to their integral involvement in cell cycle regulation, the Polo-like kinase (Plk) family, particularly Plk1, has emerged as an
attractive therapeutic target in oncology. In recent years, several Plk1 inhibitors have been developed, with some agents showing
encouraging results in early-phase clinical trials. This review focuses on volasertib (BI 6727; an investigational agent), a potent and
selective Plk inhibitor. Volasertib has shown promising activity in various cancer cell lines and xenograft models of human cancer.
Trials performed to date suggest that volasertib has clinical efficacy in a range of malignancies, with the most promising results
seen in patients with acute myeloid leukemia (AML). Encouragingly, recent phase II data have demonstrated that volasertib
combined with low-dose cytarabine (LDAC) was associated with higher response rates and improved event-free survival than LDAC
alone in patients with previously untreated AML. Based on these observations, and its presumably manageable safety profile,
volasertib is currently in phase III development as a potential treatment for patients with AML who are ineligible for intensive
remission induction therapy. Given that many patients with AML are of an older age and frail, this constitutes an area of major
unmet need. In this review, we discuss the biologic rationale for Plk1 inhibitors in cancer, the clinical development of volasertib
to date in solid tumors and AML, and the future identification of biomarkers that might predict response to volasertib and help
determine the role of this agent in the clinic.
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INTRODUCTION
The Polo-like kinases (Plks) comprise a family of five serine/
threonine protein kinases that have key roles in many processes
involved in control of the cell cycle, including entry into mitosis,
DNA replication and the stress response to DNA damage.
However, Plk1 is deemed especially important and has been the
focus of the majority of Plk research. Plk1, which is activated by
another kinase, Aurora A, has multiple regulatory roles in the cell
cycle, including the control of cell cycle progression into mitosis
(Figure 1).1,2 Although the majority of studies highlight the role of
Plk1 in mitosis, non-mitotic roles for Plk1 have also been
suggested, including protection against apoptosis,3,4 and as a
regulator of cancer cell invasiveness.5 Overexpression of Plk1 has
been observed in a variety of solid tumors as well as in acute
myeloid leukemia (AML),6–8 and has often been correlated with
poor prognosis, disease stage, histologic grade, metastatic
potential and survival.9,10 These observations have prompted
research into the potential therapeutic application of Plk inhibitors
in cancer.
One of the first Plk inhibitors to be developed was BI 2536. This

selective, small-molecule, dihydropteridinone-derived, adenosine
triphosphate-competitive kinase inhibitor of Plks 1–3 showed
promise in preclinical experiments, validating Plks as potential
drug targets in oncology.7,11 Unfortunately, phase II trials in
patients with relapsed/refractory solid tumors,12 non-small-cell lung
cancer (NSCLC),13 small-cell lung cancer,14 chemotherapy-naive

pancreatic cancer15 and relapsed/refractory AML16 demonstrated
that BI 2536 had modest, if any, clinical activity and was associated
with a generally manageable safety profile. These disappointing
results were thought to be attributable to the pharmacokinetic
(PK) profile of BI 2536, particularly its relatively short terminal
half-life (~50 h in patients with advanced solid tumors)17 and low
intratumoral exposure (as observed in hepatocellular carcinoma
samples derived from murine xenograft models), despite a large
distribution volume.18 Clinical development of BI 2536 was halted
and continued development of novel Plk1 inhibitors focused on
improving PK profiles to facilitate sustained exposure to tumor
tissues.
In this review, we focus on the discovery and development of

volasertib, a selective and potent cell cycle kinase inhibitor that
induces Polo arrest and apoptosis by targeting Plk1. Volasertib is
currently the most clinically advanced of the investigational Plk
inhibitors and this review discusses its development to date in
solid tumors and AML. In addition, we look forward to the possible
development of biomarkers of volasertib response that could help
drive future treatment decisions in individual patients.

PRECLINICAL DEVELOPMENT OF VOLASERTIB
Similar to BI 2536, a compound originally identified by screening a
library of organic compounds for the capacity to inhibit the
catalytic activity of Plk1,11 volasertib is a dihydropteridinone
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derivative and acts as a small-molecule, adenosine triphosphate-
competitive kinase inhibitor of Plk1.19 Both agents are potent and
selective inhibitors of Plk1; however, volasertib was derived by
tailoring the dihydropteridinone structure of BI 2536 based on the
criteria of potency, selectivity, ability to inhibit cell proliferation
in vitro, efficacy in xenograft models of cancer, drug metabolism
and PK characteristics.19 The chemical structure and binding mode
of volasertib to the adenosine triphosphate-binding pocket of
human Plk1 are shown in Figures 2a and b, respectively. It is
important to note that volasertib is a unique chemical entity
whose chemical structure and PK profile differ significantly
compared with BI 2536. As a result, any insights regarding efficacy
and safety previously determined with BI 2536 cannot be simply
transferred to volasertib.
Volasertib potently inhibits Plk1 (half-maximal inhibitory con-

centration (IC50) 0.87 nmol/l) as well as the two closely related
kinases, Plk2 (IC50 5 nmol/l) and Plk3 (IC50 56 nmol/l), compared
with IC50 values for BI 2536 of 0.83, 3.5 and 9.0 nmol/l,
respectively,11 but shows no inhibitory activity against a panel
of other unrelated kinases at concentrations up to 10 μmol/l
(Table 1).19 Preclinical studies of volasertib in various tumor cell
lines (colon, lung, melanoma, hematopoietic malignancies, pros-
tate, urothelial and multiple pediatric tumors) have demonstrated
inhibition of cell division that ultimately results in cell death.19–25

Targeting Plk with volasertib leads to a disruption of the mitotic
spindle assembly resulting in a distinct mitotic arrest phenotype
(‘Polo arrest’) in prometaphase, accumulation of phospho-histone
H3 and formation of aberrant monopolar mitotic spindles
followed by apoptosis (Figure 3).19,20,22,24,26 Volasertib has also
been shown to inhibit the activity of the bromodomain and
extraterminal family protein BRD4 in biochemical assays in vitro.27

BRD4, as well as fms-like tyrosine kinase 3 (FLT3), have been
suggested as drivers in the pathogenesis of AML,28,29 and
preclinical studies of BRD4 inhibitors suggest the potential of
these agents as antileukemic drugs.30,31 Although volasertib
shows effects on BRD4,27 the cellular effects on BRD4 biomarker

modulation are only observed at a concentration of 300 nM,
suggesting that the effect on BRD4 may not be a relevant
mechanism of action of volasertib.
Proteomic analyses of Plk-phosphorylated proteins using BI

2536 have identified hundreds of proteins normally affected by
phosphorylation by Plk1, illustrating the importance of Plk1 in
mitosis and other processes.32 Cellular proliferation is potently
inhibited by volasertib, which acts on all proliferating cells, in a
multitude of cancer cell lines, including colon (HCT116), lung (NCI-
H460), melanoma (BRO), non-Hodgkin lymphoma (GRANTA-519,
Raji) and AML (HL-60, THP-1) cells with half-maximal effective
concentration values of 11–37 nmol/l.19 No correlation of Plk1
mRNA expression with sensitivity was observed in a data set
based on 240 cancer cell lines derived from a variety of
cancer indications treated with volasertib in vitro (unpublished
data; Boehringer Ingelheim, Ingelheim, Germany). Volasertib also
inhibited the growth and survival of cell lines derived from
patients with pediatric acute lymphoblastic leukemia.25

In colon (HCT116) and lung (NCI-H460) xenograft tumor models,
volasertib monotherapy was associated with reduced tumor
growth, including growth delays and tumor regressions.19

Consistent with the in vitro data, volasertib treatment led to cell
cycle arrest and apoptosis in tumor samples derived from tumor-
bearing mice.19 Volasertib concentrations measured in extracts
from the tumors, multiple organs (brain, kidney, liver, lung and
muscle) and plasma samples from these mice suggest good tissue
penetration in all organs tested, although the central nervous
system exposure is notably lower than the exposure observed for
the other organs and does not exceed levels observed in the
plasma.19 Marked antitumor activity and good tolerability were
also observed in xenograft models of AML (Figure 4), human
melanoma33 and various pediatric cancers.23,24 An improvement
in antitumor control was observed with volasertib plus whole-
body irradiation in a xenograft model of squamous cell carcinoma,
likely as a result of concomitant cell cycle inhibition and cytotoxic
effects of this combination.34 Preclinical PK data showed a high

Figure 1. Functions of Plk1 during mitosis. APC/C, anaphase-promoting complex/cyclosome; Cdk1, cyclin-dependent kinase 1. Reprinted by
permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology (Barr et al.1), copyright 2004.
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volume of distribution, indicating good tissue penetration,
together with a long terminal half-life for volasertib compared
with BI 2536.19 Given these favorable PK properties that could
potentially facilitate both intravenous (i.v.) and oral formulations,
and promising preclinical efficacy and safety data,19 volasertib was
prioritized for clinical development in both solid tumors and AML.

CLINICAL DEVELOPMENT OF VOLASERTIB IN SOLID TUMORS
Clinical trials of volasertib in solid tumors are listed in Table 2. The
first-in-man trial was a phase I, dose-escalation study in 65 patients
with progressive advanced or metastatic solid tumors, who

received a single 1 h infusion of volasertib every 3 weeks.26 The
most commonly reported drug-related adverse events (AEs) were
anemia (22% of patients), fatigue (15%), neutropenia (15%),
thrombocytopenia (14%), nausea (9%), alopecia (9%) and febrile
neutropenia (8%). Grade 3/4 AEs (24%) were mostly related to
hematologic toxicity (18%), including dose-dependent neutrope-
nia, both with and without infection, and thrombocytopenia. The
main dose-limiting AE was neutropenia, and all cases of
neutropenia and thrombocytopenia were reversible and manage-
able. The maximum-tolerated dose was established as 400mg
administered intravenously on day 1 every 3 weeks; however,
300mg was selected for use in phase II trials owing to its generally
manageable safety profile. PK analyses showed volasertib to have
a large volume of distribution (44000 l), moderate clearance
(792 ml/min) and a long half-life (111 h).26 With no observed
deviation from dose-linear PK behavior in the therapeutic relevant
dose ranges, these data confirmed an improved PK profile of
volasertib.19 The first-in-man trial also revealed signs of antitumor
activity; three (5%) patients (urothelial cancer, ovarian cancer and
melanoma) achieved partial responses (PRs) and 26 (40%)
achieved stable disease, despite generally intense pretreatment
(89% had received ⩾ 3 prior chemotherapies).26

A comparable phase I study in patients with solid tumors has
been undertaken in 52 Asian patients, with results largely
consistent with those of the first-in-man trial.35 The maximum-
tolerated dose was identified as 300 mg when given on day 1
every 3 weeks, and 150 mg when administered on days 1 and 8
every 3 weeks. Dose-limiting toxicities were reversible thrombo-
cytopenia, neutropenia and febrile neutropenia. Volasertib dis-
played some antitumor activity, with two (4%) patients (ureteral
cancer and melanoma) achieving PR, while PK results showed a
half-life of ~ 107 h and a large volume of distribution (4500 l).35

A separate phase I trial in Japanese patients with solid tumors is
ongoing (Table 2).
A phase II trial of volasertib was undertaken in 50 patients with

metastatic urothelial cancer following platinum failure.36 Although
patients were heavily pretreated, volasertib demonstrated anti-
tumor activity with seven (14%) patients achieving PR and 13
(26%) achieving stable disease as best response. The most
common grade 3/4 AEs were neutropenia (28%), thrombocyto-
penia (20%) and anemia (16%); there was no evidence of
cumulative toxicity.36

Two phase II trials of volasertib are ongoing in advanced ovarian
cancer and advanced NSCLC (Table 2). Preliminary results from the
ovarian cancer study indicate that single-agent volasertib shows
antitumor activity comparable with that achieved with investiga-
tor’s choice single-agent chemotherapy, while AEs were mainly
hematologic and manageable.37 Initial data from the NSCLC study

Figure 2. Chemical and X-ray structure of volasertib. Chemical structure (a) and binding mode (b) of volasertib in the adenosine triphosphate-
binding pocket of human Plk1. Reprinted from Clinical Cancer Research, Copyright 2009, 15/9, 3094–3102, Rudolph et al.19 ‘BI 6727, a Polo-like
kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity’, with permission from AACR.

Table 1. Kinases not targeted by volasertib at concentrations up to
10 μmol/l

Abl MAPKAP-K2
AMPK MEK1
Aurora A Met
Aurora B MKK1
Axl MSK1
B-RAF Nek6
Btk p38a
Cdk1/B1 p38b
Cdk2/E p38d
CHK1 p38g
CK1 PAK2
CK2 PDGFRa
C-RAF PDGFRb
CSK PDK1
DYRK1A PI3Ka
ECK PKA
ErbB4 PKBa
ERK2 PKBb
FGFR1 PKCa
FGFR3 PRAK
FLT1 Ret
FLT3 ROCK2
GSK3β Ron
Hek S6K
HER2 SGK
HGFR Src
ITK βIRK
JAK2 Syk
JAK3 Tie2
JNK1 VEGFR1
Lck VEGFR3
Lyn
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in patients with relapsed or refractory NSCLC after platinum-based
first-line therapy show a lack of improvement in progression-free
survival or overall response rate with combination volasertib and
pemetrexed compared with single-agent pemetrexed.38

Although some patients with solid tumors have responded well
to single-agent volasertib, with some patients able to achieve
prolonged durations of response, overall antitumor activity has
been modest in trials performed to date.26,36 Combination therapy
is a potential option to improve efficacy, and volasertib has been
combined with platinum chemotherapy to investigate this
approach. In a phase I study in 61 heavily pretreated patients
with advanced solid tumors, combination treatment was generally
well tolerated, suggesting that volasertib is suitable for coadmi-
nistration with cytotoxic chemotherapy at full single-agent
doses.39,40 Five (8%) patients achieved PR, while 27 (44%)
achieved stable disease or PR. Additional studies in advanced
solid tumors are investigating volasertib combined with other
agents, including trials involving the kinase inhibitors afatinib
(NCT01206816) and nintedanib (NCT01022853), in which anti-
tumor activity has been observed. Responses were observed in
2/29 patients treated with volasertib plus afatinib (PRs in both
patients with NSCLC and head and neck cancer, respectively) and
2/30 patients treated with volasertib plus nintedanib (a complete
response (CR) in a patient with breast cancer and a PR in a patient
with NSCLC).41,42

AN UNMET NEED FOR NEW THERAPIES IN AML
Treatment guidelines are well established for AML,43–45 a
malignancy that can be challenging to manage in many cases.46

Induction chemotherapy with an anthracycline and cytarabine, as
in the widely used ‘3+7’ regimen, is standard; however, many
patients with AML are of an older age and unable to tolerate this
intensive treatment.44,45 Data from the past three decades, in
which anthracyclines plus cytarabine was the most commonly
used therapy for AML, demonstrate that little progress has been
made in improving overall survival in patients aged ⩾ 60 years
compared with those aged o60 years.47,48 In addition, there are
various cytogenetic subtypes of AML that strongly influence
response to treatment, and therapeutic resistance associated with
adverse cytogenetics is common.44,45 Hypomethylating agents or
low-dose cytarabine (LDAC) are options for some older, less-fit
patients. Azacitidine has demonstrated a survival benefit vs
conventional care regimens in older patients with AML and
20–30% blasts; however, no survival benefit has yet been
determined with azacitidine in patients with AML and 430%
blasts.49 Similarly, a randomized trial of LDAC vs palliative
treatment in patients not considered eligible for intensive therapy
demonstrated a better CR rate and improved survival with LDAC,
but no benefit was seen in patients with adverse cytogenetics.50 In
contrast, decitabine demonstrated improved CR rates, but primary

Figure 3. Volasertib prevents bipolar spindle formation, inducing cell cycle arrest in the early M phase. Immunofluorescence analysis of
NCI-H460 NSCLC cells treated for 24 h with either (a) 0.1% dimethyl sulfoxide or (b) 100 nM/l volasertib. Cells were fixed and stained with
4', 6-diamidino-2-phenylindole (to stain DNA; blue), anti-tubulin (to stain spindles; green) and anti-phosphoSer10 histone H3 (pink). Volasertib
treatment resulted in an accumulation of mitotic cells with monopolar spindles in which the kinetochores were not properly attached to the
spindle—a cellular phenotype termed ‘Polo arrest’. Reprinted from Clinical Cancer Research, Copyright 2009, 15/9, 3094–3102, Rudolph et al.19

‘BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity’, with permission from AACR.

Figure 4. Efficacy and tolerability of volasertib in human AML xenograft model. Nude mice bearing established subcutaneous MV4-11 AML
tumors with an average size of ~ 65mm3 were treated intravenously for 4 weeks with either vehicle (light blue squares) or volasertib at
40mg/kg (blue circles), 20 mg/kg (green triangles), or 10mg/kg once a week (black squares), or at 20 mg/kg two times a week on consecutive
days (red triangles). Median tumor volumes of eight animals per treatment group (a) and median body weight change as % of initial
body weight (b) are shown. Efficacy has also been demonstrated in three disseminated AML models (MV4-11 (FLT3-ITD/FLT3-ITD), Molm-13
(FLT3-ITD/wild-type FLT3) and THP-1 (wild-type FLT3/wild-type FLT3) cell lines).
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analysis did not show a significant survival benefit compared with
either supportive care or LDAC in older patients with newly
diagnosed AML.51 More efficacious treatments are urgently
needed,46,52 and as cell cycle inhibitors may be particularly useful
in rapidly proliferating malignancies such as AML, there is a clear
rationale for investigating Plk inhibitors in this setting.8 In this
context, in vitro studies have shown that Plk1 is highly expressed
in leukemic cell lines and tumor cell samples derived from patients
with AML compared with normal hematopoietic progenitor
cells.7,53 Furthermore, leukemic cells were shown to be more
sensitive to Plk1 inhibition, as demonstrated by a marked decrease
in cell proliferation, compared with normal progenitor cells.7

CLINICAL DEVELOPMENT OF VOLASERTIB IN AML
The clinical development of volasertib in AML is well underway;
reporting, ongoing and planned clinical trials are listed in Table 2.
A phase I/II study evaluated the safety, efficacy and PKs of
volasertib plus LDAC and volasertib monotherapy in patients with
AML ineligible for intensive remission induction therapy.54–57 This
trial was performed in two parts: a phase I part and a phase IIa
part. In the phase I part of the trial, volasertib was investigated in
combination with LDAC (n= 32) or as a monotherapy (n= 56) in
patients with relapsed/refractory AML to determine the
maximum-tolerated dose. In the phase II part, the combination
of volasertib plus LDAC (n= 42) was compared with LDAC
monotherapy (n= 45) in patients with previously untreated AML
to explore the efficacy of the combination schedule in comparison
with LDAC monotherapy. The phase I, dose-escalation part of the
trial, conducted in patients with relapsed/refractory AML, identi-
fied the recommended dose of volasertib as 450mg every second
week as a single agent and 350mg every second week in
combination with LDAC.54–56 At volasertib monotherapy doses
⩾ 350 mg, antileukemic activity was observed, with 5/43 (12%)
patients achieving a complete remission with incomplete blood
count recovery (CRi).56 In the volasertib plus LDAC combination
arm, 7/32 patients achieved a CR or CRi.55 In the phase II part of
the trial, preliminary data demonstrated a substantially higher
objective response rate with volasertib (350 mg) plus LDAC vs
LDAC alone with a CR/CRi rate of 31.0% vs 13.3% (P= 0.052).
Furthermore, subgroup analyses indicate that responses in the
volasertib plus LDAC treatment arm occurred across all genetic
groups (including adverse genetics). A CR was observed in 1/5
patients with FLT3-internal tandem duplication (ITD) and 3/7

patients with nucleophosmin 1 mutations treated with volasertib
plus LDAC.57 Median event-free survival (5.6 vs 2.3 months;
P= 0.021) and overall survival (8.0 vs 5.2 months; P= 0.047) was
also significantly improved for volasertib plus LDAC vs LDAC
alone.57 While toxicity was increased with combination therapy,
presumably owing to the myelosuppressive effect of volasertib,
there was no evidence of increased early mortality for the
combination regimen vs LDAC alone.57 PK analyses showed that
volasertib exhibited multicompartmental behavior with moderate
clearance, a large volume of distribution and a long terminal half-
life,55–57 as seen in patients with advanced solid tumors.26

These encouraging data from the phase II part of this AML trial
has prompted the initiation of a phase III trial of volasertib in AML
(POLO-AML-2). This trial is designed to evaluate, in a randomized,
double-blind setting, the efficacy and safety of volasertib plus
LDAC vs placebo plus LDAC in 660 patients aged ⩾ 65 years with
previously untreated AML who are ineligible for intensive
remission induction therapy (NCT01721876). The primary end
point of POLO-AML-2 is an objective response (CR and CRi), and
the study is expected to be completed in early 2016 (final data
collection date for primary outcome measure). A volasertib
monotherapy, dose-escalation, phase I trial in Japanese patients
with AML (NCT01662505) and another phase I study of volasertib
plus decitabine, a hypomethylating agent approved by the
European Medicines Agency for the treatment of patients ⩾ 65
years with AML, are ongoing (NCT02003573). Volasertib is also
being investigated in a phase I trial in combination with
azacitidine in patients with myelodysplastic syndromes or chronic
myelomonocytic leukemia who are ineligible for high-intensity
therapy (NCT01957644).

POTENTIAL BIOMARKERS OF VOLASERTIB SENSITIVITY
As discussed above, treatment with volasertib as a monotherapy
and in combination with other agents resulted in significant
clinical benefits, including prolonged durations of response, for
subgroups of patients with solid tumors.26,35–37,39–42 In AML,
volasertib in combination with LDAC resulted in a CR/CRi rate of
31% of patients in a randomized, phase II trial of patients with
previously untreated AML.57 As not all patients respond to
volasertib therapy, predictive biomarkers are of interest to
determine and/or predict drug activity and ultimately optimize
therapy options for patients.

Figure 5. Example of non-mitotic functions of Plk1: effects on the mTOR pathway. Reproduced from Oppermann et al.63 with kind permission
from the American Society for Biochemistry and Molecular Biology.
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Proteomic analyses have identified proteins normally phos-
phorylated by Plk1, including many that are not involved with
mitosis.32 These, and other proteins such as heat-shock protein
70,58 may be worth investigating as potential biomarkers of
volasertib sensitivity. There is also a possibility that Plk1-regulated
phosphoproteins may be implicated in serine/threonine kinase
activation of the mammalian target of rapamycin (mTOR) pathway
and a molecular and functional link between Plk1 and the mTOR
pathway has been shown in AML.59 As the mTOR pathway
displays aberrant regulation in hematologic malignancies such as
AML,60–62 a further range of potential downstream markers could
be investigated for sensitivity to volasertib (Figure 5).32,63 In this
regard, it is noteworthy that a proteomics study in AML identified
a signature of four phosphorylated proteins that act as predictors
for response to the FLT3-targeted tyrosine kinase inhibitor,
quizartinib.64 Proteomics of AML is still in its infancy,65 but may
allow delineation of defined signal transduction and tumor
suppressor pathways in single cells or cell extract assay:66,67

sample formats that may be relevant for future clinical trials of
Plk1-targeting therapy. Relevant markers might be also identified
based on comprehensive genomic, epigenomic and transcrip-
tomic analyses.
Other possible biomarkers may include the breast cancer

susceptibility protein, BRCA2, and the tumor suppressor protein,
p53. Given that Plk1 has been shown to phosphorylate BRCA2,68

the presence or absence of this Plk1 substrate could potentially
have some impact on volasertib susceptibility in solid tumors. In
another study, p53 has been suggested as an in vitro predictive
biomarker for the Plk1 inhibitor, GSK461364A, with the loss of p53
function resulting in sensitivity to the drug in a panel of human
cancer cell lines.69 However, a separate study on colon cancer cell
lines with volasertib showed no similar relationship.70 Clearly, the
relationship between Plk1 and p53 is complex and further work is
required to elucidate the full mechanism of their interaction in
different malignancies.
Recently, volasertib has been reported to inhibit BRD4 binding

at double-digit nanomolar concentrations in biochemical and
binding assays; however, cellular effects on a BRD4 pharmacody-
namic biomarker were only observed at concentrations of
300 nM.27 In published works, inhibitors of BRD4 appear more
effective in nucleophosmin 1 or DNA (cytosine-5)-methyltransferase
3-mutated AML cells,71,72 but a deeper understanding of the role
of BRD4 as epigenetic modulator in AML is still missing. The
concept of dual Plk1 and BRD4 inhibition may be interesting in
light of ongoing trials with epigenetic modulators.73 The histone
deacteylase inhibitor valproic acid has been shown to upregulate
trimethylation of histone H3 lysine 27 in AML cells,74 and may be
an interesting drug for volasertib combination therapy.

CONCLUSIONS AND FUTURE PERSPECTIVE
To date, the promising therapeutic effects of volasertib have been
most clearly observed in patients with AML when given in
combination with LDAC. In part, this may be due to the high
mitotic index of the malignancy and its high expression of Plk1,
combined with the balanced efficacy and safety profiles of this
drug and its favorable PK characteristics. From a drug exposure
perspective, the concentration of volasertib in the vicinity of
malignant hematopoietic cells in the blood/bone marrow of AML
patients may differ significantly from that in the tissue surround-
ing cancerous cells in solid tumors. Indeed, the malignant cells in
AML reside in the same vascular system that delivers the drug into
the body. Even small molecules like volasertib may have limited
distribution in solid tumors owing to heterogeneous blood supply,
elevated interstitial pressure and large transport distances in the
interstitium,75 although this may be partially eliminated by the
large distribution volume observed with volasertib.26 Finally,
vigorous proliferation of malignant cells may be observed in

AML, making this disease more susceptible to Plk1 inhibitors than
solid tumors, whose cells tend to display a slower growth rate.
In the 25 years since intensive induction regimens became

standard therapy for AML, little progress has been made in
improving overall survival in patients aged ⩾ 60 years.47,48 An
urgent need therefore exists for development of better therapies
for AML, especially in older patients. The use of volasertib in
combination therapy is a promising option requiring further
exploration in this setting, particularly in previously untreated
patients with AML who are ineligible for intensive induction
therapy. Results of the POLO-AML-2 phase III AML trial will provide
useful insights into the potential utility of this approach in this
patient population.
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