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Activating c-KIT mutations confer oncogenic cooperativity and
rescue RUNX1/ETO-induced DNA damage and apoptosis in
human primary CD34þ hematopoietic progenitors
C Wichmann1,2,7, I Quagliano-Lo Coco1,7, Ö Yildiz1, L Chen-Wichmann1,2, H Weber1,3, T Syzonenko1, C Döring4, C Brendel1,
K Ponnusamy2,5, A Kinner1, C Brandts6, R Henschler2,5 and M Grez1,7

The RUNX1/ETO (RE) fusion protein, which originates from the t(8;21) chromosomal rearrangement, is one of the most frequent
translocation products found in de novo acute myeloid leukemia (AML). In RE leukemias, activated forms of the c-KIT tyrosine kinase
receptor are frequently found, thereby suggesting oncogenic cooperativity between these oncoproteins in the development and
maintenance of t(8;21) malignancies. In this report, we show that activated c-KIT cooperates with a C-terminal truncated variant of
RE, REtr, to expand human CD34þ hematopoietic progenitors ex vivo. CD34þ cells expressing both oncogenes resemble the AML-
M2 myeloblastic cell phenotype, in contrast to REtr-expressing cells which largely undergo granulocytic differentiation. Oncogenic
c-KIT amplifies REtr-depended clonogenic growth and protects cells from exhaustion. Activated c-KIT reverts REtr-induced DNA
damage and apoptosis. In the presence of activated c-KIT, REtr-downregulated DNA-repair genes are re-expressed leading to an
enhancement of DNA-repair efficiency via homologous recombination. Together, our results provide new mechanistic insight into
REtr and c-KIT oncogenic cooperativity and suggest that augmented DNA repair accounts for the increased chemoresistance
observed in t(8;21)-positive AML patients with activated c-KIT mutations. This cell-protective mechanism might represent a
new therapeutic target, as REtr cells with activated c-KIT are highly sensitive to pharmacological inhibitors of DNA repair.
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INTRODUCTION
Chromosomal translocations involving members of the core-
binding factor (CBF) family are among the most frequent
cytogenetic abnormalities found in acute myeloid leukemia
(AML). The best characterized translocation involving CBF family
members is the translocation t(8;21). In this translocation, the
hematopoietic master regulator gene RUNX1 (also known as AML1,
CBFa2 or PEBP2aB) on chromosome 21 is fused to almost the
entire ETO gene (also known as MTG8 or RUNX1T1) on chromo-
some 8, thereby generating the fusion protein RUNX1/ETO (RE).
RE retains the DNA-binding domain of RUNX1, while ETO provides
multiple docking sites for members of the nuclear corepressor
families such as N-CoR, mSin3, SMRT and various histone
deacetylases and thus acts primarily as a transcriptional repressor
of RUNX1 target genes leading to an epigenetic-driven block of
myeloid differentiation.1–3 As the translocation t(8;21) has been
found in utero and in the blood of newborns several years before
disease onset, additional genetic alterations must occur for full
blast cell transformation.4 Indeed, leukemia development has not
been observed in immunocompromised mice transplanted with
human hematopoietic CD34þ precursors expressing RE.5

Genetic aberrations affecting transcription factors and genes
involved in signal transduction represent two classes of the most
frequently detected mutational events in human leukemia.

Murine experiment data have favored a model of AML
pathogenesis in which the two groups of genetic alterations
are required for the induction of full-blown disease. In human
t(8;21)þ leukemia samples, mutations in receptor tyrosine
kinase genes, primarily c-KIT and to a lesser extent FLT3, or
mutations in N-RAS are recurrently found,6 suggesting that RE
requires altered signal transduction pathways for leukemia
development. In particular, c-KIT mutations are found at high
frequencies (up to 48%) in AML samples harboring the
translocation t(8;21), and they are associated with a high
incidence of relapse after chemotherapy.6–8 Moreover,
cooperativity between RE and activated forms of c-KIT in the
induction of AML has been recently demonstrated using mouse
transplantation models.9,10

The most common class of c-KIT mutations in t(8;21)-associated
AML occurs in the activation loop (A-loop) of the kinase domain,
which has an auto-inhibitory function, most frequently resulting in
D816V or N822K mutations.11 High expression levels of activated
c-KIT mutants correlate with poor disease outcome, especially
when co-expressed with a C-terminal truncated splice variant form
of RE, referred to as RE9a.6 AML patients with high levels of both
RE9a and activated c-KIT exhibit a significantly shorter event-free
and overall survival time compared with patients with low RE9a
expression levels.6
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In this work, we analyzed potential oncogenic cooperativity
between mutated c-KIT and a truncated variant of RE (REtr) lacking
the C-terminal NHR3 and NHR4 domains. We show a robust
oncogenic cooperativity between activated forms of c-KIT and REtr
in human CD34þ progenitor cells using a recently published
ex vivo progenitor cell expansion assay.5,12,13 Together with REtr,
c-KIT(N822K) expression blocks cellular differentiation of progenitor
cells at the myeloblastic stage, enhances long-term culture and
clonogenic growth and protects cells from RE-induced DNA damage
and apoptosis by activating the DNA-damage repair machinery.

MATERIALS AND METHODS
Cloning of MSCV vectors
The expression plasmid MSCV-REtr-IRES-eGFP has been described pre-
viously.14 In this plasmid, a tandem Tomato (tdTomato) cDNA was inserted
to replace eGFP, thereby resulting in MSCV-REtr-IRES-tdTomato. C-KIT A-loop
mutations were generated via site-directed mutagenesis (Stratagene,
La Jolla, CA, USA). All constructs were verified via sequence analysis.

Cell culture and retroviral transduction
Kasumi-1, 293T and U937 cells were cultured as previously described.14

G-CSF (granulocyte colony-stimulating factor)-mobilized peripheral blood
CD34þ cells were cultured in Iscove’s modified Dulbecco’s medium (Life
Technologies, Karlsruhe, Germany) supplemented with 20% fetal calf
serum, 20 ng/ml Flt-3 l, 20 ng/ml GM-CSF, 20 ng/ml stem cell factor (SCF),
20 ng/ml thrombopoietin, 20 ng/ml interleukin (IL)-6, 10 ng/ml IL-3 (all
cytokines were obtained Peprotech, Hamburg, Germany), 100 U/ml
penicillin/streptomycin and 2 mM L-glutamine. Retroviral transduction
and long-term cultivation were performed as previously described.5

IMR-90 cells (ATCC-CCL-186) were cultured as suggested by the supplier.

Analysis of genomic instability
Cells were analyzed as described previously.15 Briefly, cells were fixed in 2%
paraformaldehyde and permeabilized for 5 min in phosphate-buffered
saline with 0.1% Triton-X-100. The primary antibody anti-g-H2AX 3F2
antibody (1:200; Abcam, Cambridge, Great Britain) was used. Alexa 488-
conjugated donkey anti-mouse (1:400; Invitrogen, Carlsbad, CA, USA) or
Alexa 546-conjugated goat anti-mouse (1:200; Invitrogen) were used as
secondary antibodies. For g-tubulin staining, we used the ab11317
antibody (Abcam) at a 1:400 dilution and Alexa 546-conjugated goat
anti-mouse antibody as the secondary antibody (1:200; Invitrogen). DNA
was counterstained with 50 ng/ml DAPI (4,6-diamidino-2-phenylindole;
Invitrogen). For g-H2AX and Rad51 repair kinetics, cells were irradiated
with 4 Gy (g-irradiation) and incubated for 2, 4, 8 and 24 h at 37 1C followed
by fixation and staining as described above.

Fluorescence-activated cell sorting (FACS) analysis, cell cycle and
apoptosis assays
For the analysis of cell surface markers, we used FITC (fluorescein
isothiocyanate)-, phycoerythrin-, phycoerythrin-Cy7 or allophycocyanin-con-
jugated anti-human HLA-DR, CD3, CD10, CD11b, CD11c, CD13, CD14, CD15,
CD19, CD33, CD34, CD38, CD41a and CD117 antibody as well as mouse
monoclonal immunoglobulin G1 or mouse immunoglobulin G1 isotype
control antibodies (all obtained from BD Pharmingen, Heidelberg, Germany).
For cell cycle analysis, cells were incubated for 15 min with 2mM DRAQ5 (Alexis
Biochemicals, San Diego, CA, USA) at 37 1C followed by FACS analysis.14

Analysis of homologous recombination
Homologous recombination events were measured essentially as
described in Epinat et al.16 Briefly, IMR-90 cells expressing REtr or
REtrþ c-KIT(N822K) were transfected with a plasmid containing a split
b-galactosidase gene. After TALEN-induced double-strand break, proper
homologous recombination rescued b-galactosidase activity.

Transcriptome analysis
G-CSF-mobilized peripheral blood CD34þ cells (LONZA, Walkersville, MD,
USA) were transduced with the MSCV-c-KIT(N822K) vector or mock-
transduced and eGFPþ cells were FACS sorted 6 days after transduction.
Stably transduced U937 cells were FACS sorted before analysis. Total RNA

(input: 40 ng) from sorted cells (490% purity) was amplified and cDNA
labeled using standardized protocols. Microarray hybridization (4� 44 K
human GE Array, Agilent (Böblingen, Germany) (CD34þ cells) or GeneChip
Human Gene 1.0 ST V1 arrays, Affymetrix (Santa Clara, CA, USA), (U937
cells)), washing steps and scanning of the microarrays were performed
according to the suppliers’ protocol. Statistical analysis was done either
with the statistical computing environment R version 2.12.17 or DAVID
(http://david.abcc.ncifcrf.gov/). Additional software packages were taken
from the Bioconductor project.18

RESULTS
RUNX1/ETOtr and c-KIT(N822K) cooperate in the ex vivo expansion
of CD34þ hematopoietic progenitor cells
The t(8;21)-associated gene product RE and the activated mutant
of c-KIT (c-KIT(N822K)) were stably expressed in primary human
CD34þ cells using retroviral vectors co-expressing fluorescence
marker genes, which allowed for continuous detection and
analysis of gene-modified cells during ex vivo log-term culture
(Figure 1a). In our studies, we used a truncated version of RE, REtr,
as a recent report has shown a strong correlation between the
occurrence of activating mutations in c-KIT and high expression
levels of RE9A, an equivalent splice variant of RE lacking
the C-terminal NHR3 and NHR4 domains of ETO.6,19 We selected
the c-KIT mutation N822K for our studies, as N822K represents the
most frequent individual mutation among all c-KIT mutations
found in t(8;21) AML (Supplementary Figure S1a).6 Co-expression
of REtr and c-KIT(N822K) in human CD34þ enriched progenitor
cells led to a robust and highly reproducible SCF-dependent
outgrowth of cells expressing both oncogenes in ex vivo
expansion cultures, which resulted in an almost pure population
(490%) of REtrþ c-KIT(N822K) double-positive cells (Figures 1b
and c and Supplementary Figure S1b). Similar results were
obtained with full-length RUNX1/ETO (data not shown). In
contrast, CD34þ cells transduced with c-KIT(N822K) alone failed
to expand and exhibited a behavior similar to mock-transduced
cells (Figure 1c). The oncogenic cooperativity could not be
reproduced with wild-type c-KIT, suggesting a critical role of the
activating mutation N822K in CD34þ expansion (Figure 1d).
Substitution of amino-acid 568 (Y568F), a juxtamembrane amino
acid critical for kinase activation, completely abolished the
function of c-KIT(N822K), thereby indicating that proper kinase
activity is required for the observed effects of c-KIT(N822K)
(Supplementary Figure S1c). Similar to the effects observed with
c-KIT(N822K), other c-KIT-activating mutations also conferred
oncogenic support of REtr-enhanced CD34þ cell expansion. The
c-KIT A-loop mutations D816V, A814S and V825A (Figure 1e and
Supplementary Figure S1a) also cooperated with REtr in enhan-
cing the expansion of double-transduced cells to almost 100%
from an initial minor fraction (1%) of REtr and c-KIT-mutant
co-expressing cells (Figure 1f). In contrast, the c-KIT mutation L793S,
which has only been described in a single t(8;21) patient, did not
confer oncogenic cooperativity (Figures 1e and f, Supplementary
Figure S1a and Jiao et al.6). Similar to the N822K mutant, the c-KIT
mutants V825A, D816V and A814S did not generate an outgrowth
of transduced CD34þ cells (Supplementary Figure S2a). Similarly,
co-expression of FLT3-ITD, which is rarely found in t(8;21)þ
leukemia, or an activated form of signal transducer and activator
of transcription factor 5 (STAT5) did not enhance REtr-mediated
growth of transduced cells. Under these conditions, only REtr
single-transduced cells expanded in culture (Supplementary
Figure S2b). Oncogenic cooperativity could also be observed in a
stepwise expansion and selection process. REtr-expressing cells
were also transduced with either c-KIT(N822K) or activated forms of
STAT3 (caSTAT3) or STAT5 (caSTAT5). Only c-KIT(N822K)- and
REtr-expressing cells expanded in culture and overgrew single
REtr-transduced cells 26 days after transduction (Supplementary
Figures S2c and d). This selection process for REtr- and
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c-KIT(N822K)-expressing cells could be further enhanced with a
low-dose AraC treatment, a chemotherapeutic drug that has been
shown to induce cellular differentiation at low concentrations
(Supplementary Figure S3; Castaigne et al.20).

REtr- and c-KIT(N822K)-expanded progenitor cells exhibit a
phenotype similar to FAB AML-M2 myeloblastic cells
After ex vivo expansion, REtr- and REtrþ c-KIT(N822K)-expressing
cells were analyzed via FACS for cellular differentiation markers. In

agreement with the published data, only a minor fraction of REtr-
expressing cells remained CD34þ , while most cells expressed
myeloid differentiation markers.5,12 In contrast, REtrþ c-KIT(N822K)
co-expressing cells were highly positive for CD11c and CD13 and
resembled myeloblastic cells as originally described for AML FAB-
M2 primary leukemia (Figure 2a). Based on the forward scatter/side
scatter profiles, REtrþ c-KIT(N822K) co-expressing cells were
homogeneous and smaller in size with reduced levels of cell debris
and differentiation. This enhanced differentiation block was also
evident during the selection process by gating on the individual
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populations as well as for c-KIT(V825A), c-KIT(D816V) and
c-KIT(A814S) co-expressing cells (Supplementary Figures S4a and b).
Wright–Giemsa-stained cytospins further confirmed that REtrþ
c-KIT(N822K) co-expressing cells exhibited a more primitive cell
morphology compared with REtr cells as demonstrated by the less
segmented nuclei and a higher nucleus/cytoplasm ratio (Figure 2b).
In REtrþ c-KIT(N822K) co-expressing cells, a broad CD34þ cell
population became evident even after 60 days of ex vivo culture,
with 20% CD34þ /CD38� cells, a cell surface marker combination
characteristic of primitive progenitor cells (Figure 2b). Morphologi-
cally, the REtrþ c-KIT(N822K)þ population showed a distinct shift
towards undifferentiated blasts and myeloblasts, while REtr-
expressing cells preferentially differentiated into macrophage-like
cells (Figure 2c). To understand whether REtrþ c-KIT(N822K)þ
cells remained dependent on REtr expression, we generated

double-positive cells expressing a floxed REtr-IRES-tdTomato
construct (Figure 2d). After outgrowth, the double-positive cells
were transduced with vectors expressing Cre recombinase. Excised
REtr became evident by the loss of tdTomato fluorescence, which
was co-expressed with REtr. Over time, the Cre-expressing, REtr-
negative cells were lost owing to cell cycle arrest at G1 and
concomitant myeloid differentiation (Figures 2e and f), thereby
suggesting that REtr expression has an essential role in the
maintenance of cell growth in REtr-c-KIT(N822K) long-term cultures.

C-KIT(N822K) enhances REtr-induced progenitor cell expansion
and clonogenic growth
Compared with REtr counterparts, REtrþ c-KIT(N822K)-expressing
CD34þ cells displayed a growth advantage in cumulative cell
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growth in dense (1� 10e6 cells/ml) ex vivo culture conditions
(Figure 3a). Approximately 30 days after initial transduction, the
growth advantage of double-transduced cells became visible.
From day 60 onwards, REtr-expressing cells and double-trans-
duced cells were assessed for clonogenic potential in methylcel-
lulose-based colony-forming unit assays. Both populations were
able to generate colonies until day 102 posttransduction;
however, the quantity and size of colony-forming units derived
from the REtrþ c-KIT(N822K) co-expressing cells suggested an
increased number of progenitor cells with colony-forming
capacity in this population (Figures 3b and c). In mixed cultures
containing both REtr and REtrþ c-KIT(N822K) cells in the same
well, REtrþ c-KIT(N822K) co-expressing cells overgrew REtr cells
within 10 days (Supplementary Figure S4c). In a serial dilution
assay, REtrþ c-KIT(N822K) co-expressing cells could be replated
for several rounds, whereas REtr-expressing cells stopped growing
after a few replating rounds, thereby strengthening the observa-
tion of an increased number of progenitor cells with increased
self-renewal potential in the REtrþ c-KIT(N822K) cell population
(Figure 3d). A similar effect was observed after seeding a limited
number of cells per well. REtrþ c-KIT(N822K) co-expressing cells
replenished the culture even from a small number of seeded cells
(1000 cells/48-well plate), whereas REtr-expressing cells did not
sustain growth (Figure 3e). REtrþ c-KIT(N822K) cells remained
cytokine dependent but were able to grow even in the presence
of 1/10 of the initial cytokine concentration (20 ng/ml), albeit with
slower kinetics (Supplementary Figure S4d). However, complete
cytokine deprivation led to cell death in both REtr- and REtrþ
c-KIT(N822K)-expressing cells.

C-KIT(N822K) does not propel the cell cycle but reduces the basal
apoptosis rate in REtr-expressing cells
As activated tyrosine kinases are regarded as proliferation drivers
in leukemia,21 we compared the cell cycle distribution of single

versus double oncogene-expressing cells during the course of
ex vivo expansion. Interestingly, no obvious difference was
observed between the populations expressing REtr and REtrþ
c-KIT(N822K) at day 10 after transduction, a time point at which
REtr- and REtrþ c-KIT(N822K)-expressing cells co-exist (Figure 4a).
However, after outgrowth, analysis of the individual REtr single or
REtrþ c-KIT(N822K) double-positive populations revealed a clear
difference in cell cycle distribution with 26% of the REtrþ
c-KIT(N822K) cells in the S/G2M phase of the cell cycle, most likely
reflecting a higher percentage of proliferation-competent pro-
genitor cells in this population. In contrast, REtr cells were found to
be primarily arrested in the G1 phase (Figure 4b). This increased
proliferation rate was accompanied by a reduction in the basal
apoptosis level as estimated by analyzing Annexin-V, subG1 levels
and intracellular binding of a FITC-tagged ZVAD peptide in REtrþ
c-KIT(N822K) co-expressing cells (Figure 4c). In parallel, western
blotting analysis revealed increased levels of the anti-apoptotic
proteins AVEN, BCL2, BCLXL and MCL1 with reduced levels of
activated caspase-3 and caspase-9 in REtrþ c-KIT(N822K) cells,
which also implies a decrease in the basal apoptosis rate.
Furthermore, we found increased levels of AKT(S473) phosphor-
ylation in c-KIT(N822K) co-expressing cells concomitant with
increased phosphorylation of the adaptor protein GAB2 (Grb2-
associated binder 2), which mediates the interaction between
activated forms of c-KIT and phosphatidylinositol 30-kinase (PI3K),
thereby enhancing c-KIT signaling via the PI3K/AKT pathway
(Figure 4d).

As activated caspases target REtr for degradation,22–24 we
aimed to determine whether the downregulation of caspase
activity in REtrþ c-KIT(N822K) cells would stabilize the REtr
protein. As expected, no REtr cleavage products were observed
in REtrþ c-KIT(N822K) cells (Supplementary Figures S5a and b).
As the initiator caspase, caspase-9 was found activated exclusively
in REtr cells but not in cultures co-expressing several activated
c-KIT forms, we treated REtr cells with the pan-caspase inhibitor
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ZVAD-fmk and assessed REtr protein integrity via western blotting.
In fact, we found reduced REtr cleavage after 3-day preincubation
with ZVAD-fmk, indicating that caspases are indeed involved in
REtr fragmentation (Supplementary Figure S5c).

REtrþ c-KIT(N822K)-co-expressing progenitors are resistant
towards imatinib but respond to PI3K inhibitors
As c-KIT(N822K) potentiates the transformation abilities of REtr, we
aimed to inhibit oncogenic c-KIT in growing cultures by
administration of imatinib. Surprisingly, REtrþ c-KIT(N822K) cells
did not respond to imatinib, even at high concentrations
(Figure 5a). At the molecular level, PI3K signaling was slightly
reduced at 5 mM imatinib, as assessed by measuring AKT
phosphorylation but was completely abrogated in the presence
of the PI3K inhibitor Ly294002 (Figures 5b and c). In the presence
of Ly294002, induction of apoptosis became obvious in cells
expressing both oncogenes as measured with Annexin-V staining
(Figure 5d). Furthermore, Ly294002 acted synergistically with
daunorubicin, to induce apoptosis in REtrþ c-KIT(N822K)-expres-
sing cells (Figure 5e). To understand the role that c-KIT(N822K)
activity has in continuous progenitor cell growth, a floxed
c-KIT(N822K) was introduced into CD34þ cells together with
REtr. After outgrowth of double-positive cells, a Cre-T2A-YFP
construct was retrovirally introduced. Four days thereafter, YFP-
expressing cells were negative for c-KIT as analyzed via CD117
staining and PCR of genomic DNA, thereby indicating proper Cre-
mediated excision of c-KIT(N822K) (Figures 5f and g). C-KIT(N822K)
deletion resulted in a rapid loss of cells with increased Annexin-V
positivity (Figures 5h and i), indicating that c-KIT(N822K) is indeed
required for the maintenance of cell growth of REtrþ c-KIT(N822K)
progenitors.

C-KIT(N822K) accelerates DNA repair and counteracts REtr-induced
DNA damage
Among the multiple genes transcriptionally repressed by RUNX1/
ETO, genes involved in the DNA-damage response have an

important role in RE-induced leukemogenesis via the induction of
genomic instability. In fact, mutants of RUNX1 lacking the
C-terminal amino acids trigger the formation of DNA double-
strand breaks.25–29

Therefore, we analyzed genomic instability in CD34þ cells
expressing either REtr or REtr and c-KIT(N822K). As reported
recently, we found increased numbers of g-H2AX foci in REtr-
expressing CD34þ cells (Figures 6a and b and Krejci et al.27).
Surprisingly, we detected a decreased overall number of g-H2AX
foci in REtrþ c-KIT(N822K)-positive cells, suggesting either an
attenuated DNA-damage response or increased kinetics of
double-strand break repair (Figures 6a and b). Genomic
instability was not unique to REtr-expressing CD34þ cells, as
similar effects were observed in the p53-positive human diploid
IMR-90 cell line. REtr expression in these cells led to a significant
increase in centrosomal aberrations as detected via g-tubulin
staining (Figure 6c). Co-expression of c-KIT(N822K) in REtr IMR-90
cells resulted in a significant and concentration-dependent
reduction in abnormal centrosome numbers (Figure 6c). We
next aimed to determine whether the increased apoptosis rate
observed in REtrþ c-KIT(N822K) cells upon LY294002 treatment
was caused by increased numbers of DNA double-strand breaks.
As expected, a significant increase in g-H2AX foci numbers was
observed in REtrþ c-KIT(N822K) cells after LY294002 treatment,
thereby linking the effect of the PI3K inhibitor to the increased
DNA damage in c-KIT(N822K)-expressing cells. Of note, wild-type
CD34þ cells were not affected by this treatment (Figure 6d). To
investigate the molecular basis of c-KIT(N822K)-induced changes
in the DNA-damage response, we assessed the kinetics of DNA
double-strand break repair in REtrþ c-KIT(N822K)-positive cells
after g-irradiation with 4 Gy. Compared with wild-type cells, we
found an enhanced rate of DNA repair in CD34þ cells
expressing REtrþ c-KIT(N822K) (Figure 6e). To decipher the
mechanisms of enhanced double-strand repair, we analyzed
the rate of repair by non-homologues end joining (NHEJ) and
homologous recombination (HRR) in REtr cells co-expressing
c-KIT(N822K) using a cellular assay based on the reconstitution of
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a functional b-galactosidase cDNA.16 Although we did not
observe differences in the kinetics of repair by NHEJ (data not
shown), we found a significant reduction (Po0.0001) in the
frequency of HRR in IMR-90 cells expressing REtr, which was
entirely reversed upon expression of c-KIT(N822K) (Figure 6f).
Compared with control and REtr-expressing cells, REtrþ
c-KIT(N822K) co-expressing IMR-90 cells showed increased
nuclear Rad51 levels, thereby supporting the notion of enhance-
ment of DNA-repair process via homologous recombination
(Figure 6g). The observed increased levels of phospho-Rad51 and
the accelerated rate of HRR as measured via Rad51 repair kinetics
after gamma-irradiation further strengthened this hypothesis
(Figures 6h–j). Furthermore, several important DNA-repair genes

involved in homologous recombination that are known to be
downregulated by REtr, such as OGG1, ATM and BRCA2,27 were
re-expressed in REtr cells co-expressing c-KIT(N822K) (Figure 6k).
The increased repair kinetics observed in REtrþ c-KIT(N822K)-
expressing cells should increase the sensitivity of these cells
towards DNA-repair inhibitors. Indeed, treatment of REtrþ c-
KIT(N822K)- and REtr-expressing IMR-90 cells with the ATM
inhibitors KU55933 and KU60019 and the PARP-inhibitor
Olaparib resulted in increased levels of apoptotic cells, thereby
implying that the DNA-repair machinery represents a novel
therapeutic target for the treatment of t(8;21)þ leukemias with
activated c-KIT mutations (Figure 6l). Apoptosis induction
triggered by the ATM inhibitor KU55933 was also observed in
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CD34þ cells expressing REtrþ cKIT(N822K), thus validating the
use of DNA-repair inhibitors for the treatment of RE leukemias
(Figure 6m).

Transcriptome analysis of REtrþ c-KIT(N822K)-expressing cells
compared with REtr-only-expressing cells revealed a large number
of deregulated genes. Besides signal transduction, genes involved
in immunity, host defense and inflammation were selectively
deregulated in c-KIT(N822K) expressing cells, suggesting addi-
tional potential targets for a specific therapeutic intervention in
t(8;21) leukemia with activated c-KIT mutations (Supplementary
Figure S6 and Supplementary Tables S1–S3).

DISCUSSION
We show that activated c-KIT mutants strongly enhance REtr-
mediated human CD34þ progenitor cell expansion in long-term
ex vivo cultures. Within 30 days, REtrþ c-KIT(N822K)-expressing
cells predominated in culture and generated immature cell
populations with increased self-renewal and survival potential.
The expanded cell populations remain SCF- and cytokine-
dependent, although lower concentrations were required for
proliferation, thereby indicating the necessity of complementary
signaling pathways for cell growth. Although overexpression of
wild-type c-KIT has been found to be associated with t(8;21)þ
AML6 and has the potential to drive oncogenic cooperativity with
RE in a murine leukemia model,30 wild-type c-KIT did not
cooperate with REtr-mediated progenitor expansion in our
humanized CD34þ cell expansion model. Therefore, our cell
culture system can be used to discriminate between silent and
activating mutations of c-KIT. Expression of activated c-KIT alone,
however, did not confer progenitor cell expansion properties
comparable with RE. In this aspect, our model differs from two
recent reports published during the course of our studies showing
cooperativity between RE and activated c-KIT in mouse models.9,10

In these studies, activated c-KIT alone triggered leukemia
development, and when co-expressed with RE, it slightly
accelerated leukemia onset. Although RE- and c-KIT(N822K)-
expressing human primary CD34þ cells accurately resembled
the AML FAB-M2 myeloblastic phenotype, intravenous and
intrafemoral injection of these cells into sublethally irradiated
NSG mice did not lead to leukemia development (Supplementary
Figure S7), thereby arguing either for the necessity of additional
hits or the absence of specialized bone marrow niches for full
blast cell transformation of human hematopoietic progenitors
in NSG mice.

As imatinib has been shown to bind to the catalytic center of
c-KIT, we investigated its effect on REtr- and c-KIT(N822K)-
co-expressing human progenitor cells. Previous work has demon-
strated that imatinib can revert the effects of activated c-KIT on
factor-independent growth of IL-3-dependent murine hemato-
poietic cell lines, which become IL-3-independent upon

expression of activated c-KIT in the absence of SCF.9,31 In
contrast, imatinib applied as a single agent has only moderate
effects in human primary t(8;21)þ AML cells harboring the cKIT
mutation N822K.7 Our experiments also suggest that imatinib has
a limited inhibitory effect on the activated forms of c-KIT, as
REtrþ c-KIT(N822K) cells do not respond to imatinib treatment.
The permanent presence of SCF in our cell culture media most
likely renders the kinase in a constitutive activated conformation,
which prevents binding of the inhibitor, as imatinib preferentially
binds to the catalytic site of the enzyme in its inactive
conformation.32,33 Moreover, we found activated GAB2 in
REtrþ c-KIT(N822K) cells, which has recently been shown to
confer resistance to multiple kinase inhibitors, including imatinib,
nilotinib and dasatinib, in BCR/ABL-positive cells.34 In contrast,
inhibition of PI3K signaling was highly effective in REtrþ
c-KIT(N822K) cells and showed synergistic effects when
administrated together with daunorubicin. Indeed, the PI3K/AKT
pathway is a major signaling node activated by several receptor
tyrosine kinases, including c-KIT, thus providing a rational for a
therapeutic intervention.35–39 However, the PI3K inhibitor used in
our study, Ly294002, has been shown to bind to several other
therapeutic targets, and therefore we cannot attribute the effects
of Ly294002 to the exclusive inhibition of PI3K activity.40,41

Several recent reports have demonstrated that RE has a direct
role in the induction of DNA damage linking RE to genomic
instability. In fact, RE alone is sufficient to induce increased
numbers of g-H2AX foci in human CD34þ long-term cultures
together with an increase in the basal apoptosis rate.26,27

However, induction of apoptosis would counteract the pro-
leukemic properties of RE. Therefore we anticipated that
activated c-KIT could have a role in dampening the DNA-
damage response, thereby lowering the rates of cell death. We
found that activated c-KIT was able to restore the expression of
RE-induced downregulation of ATM, OGG1 and BRCA2, which are
important members of the DNA-repair machinery.26 Moreover, the
c-KIT-mediated effects on the DNA-damage response were
reverted by the PI3K inhibitor Ly294002. PI3K and AKT
are critical for DNA repair,42 and PI3K has been shown to
upregulate BRCA2 expression thereby stabilizing homologous
recombination.43 OGG1, which acts as an 8-oxoG glycosylase and
endonuclease, was also described to be induced by the PI3K
signaling pathway.44 Furthermore, we found that the expression
of ATM was restored in REtrþ c-KIT(N822K)-expressing cells. ATM,
in turn, is involved in the activation of the DNA-damage response
and contributes to the recruitment of the DNA-repair machinery to
DNA strand breaks resulting in HRR or NHEJ.45 Increased DNA-
repair rates in REtrþ c-KIT(N822K) co-expressing cells were
accompanied by reduced apoptosis levels and caspase activity.
The latter may explain the reduced REtr cleavage rates observed in
c-KIT(N822K) co-expressing cells, as REtr has been shown to be a
target of caspases.23 Increased REtr levels may then account for

Figure 6. DNA-damage response in REtr- and REtrþ c-KIT(N822K)-expressing cells. (a) Immunofluorescence staining for g-H2AX foci (red) in
transduced CD34þ cells after outgrowth. Nuclei were counterstained with DAPI (blue). (b) Quantification of g-H2AX foci in transduced
CD34þ cells. Foci of 800–1000 individual nuclei were quantified on confocal picture stacks. Irradiated (1 Gy) CD34þ cells were used as
control. (c) Quantification of centrosome numbers in IMR-90 cells transfected with the indicated plasmids. (d) Quantification of g-H2AX foci in
transduced CD34þ cells after 2 days of treatment with the PI3K inhibitor Ly294002 or DMSO. Foci of 150–200 individual nuclei were
quantified on confocal picture stacks. (e) Quantification of g-H2AX foci in transduced CD34þ cells at different time points after g-irradiation
(4Gy). Foci of 200–400 individual nuclei were quantified on confocal picture stacks. (f ) Reconstitution of b-galactosidase activity after
homologous recombination in IMR-90 cells expressing REtr or REtrþ c-KIT(N822K). Wild-type (WT) cells were used as controls. (g) Cellular
localization of Rad51 in REtr- and REtrþ c-KIT(N822K)-expressing cells or WT IMR-90 cells. Actin, tubulin and lamin were used to control for
cellular localization and loading. (h) Analysis of Rad51 phosphorylation in REtr- and REtrþ c-KIT(N822K)-expressing IMR-90 cells.
(i) Quantification of Rad51 phosphorylation in REtr- and REtrþ c-KIT(N822K)-expressing or WT IMR-90 cells. (j) Quantification of Rad51 foci
in transduced IMR-90 cells at different time points after g-irradiation (4 Gy). Foci of 200–400 individual nuclei were quantified on confocal
picture stacks. (k) Relative expression of genes involved in HRR in cells expressing REtr or REtrþ c-KIT(N822K). WT U937 cells were used as
control. Values are normalized on TBP expression levels. (l) Apoptosis level in REtr- and REtrþ c-KIT(N822K)-expressing or WT IMR-90 cells after
daily treatment with DDR inhibitors. (m) Apoptosis levels in WT or REtrþ c-KIT(N822K)-expressing CD34þ cells after daily treatment with
Ku55933. Annexin-V staining was performed after 5 days of treatment. (n¼ 3). (***Po0.001, **0.001oPo0.01, *Po0.05).
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the more immature cell phenotype as observed in primary
t(8;21)þ leukemia cells with high RE expression levels.6

Additionally, caspases also trigger cellular differentiation and are
involved in RAD51 degradation.46–48

Our results show that C-KIT(N822K) triggers a series of
pleiotropic effects in CD34þ cells expressing REtr, including
reduced apoptosis, enhancement of chemoresistance, reactivation
of DNA-repair genes and accelerated repair of DNA damage. These
effects act in synergy to generate a preleukemic stage, which may
predispose primary CD34þ cells to overt transformation. The
continuous expression of both oncogenes was necessary for the
observed effects, as deletion of either REtr or c-KIT(N822K) led to a
significant increase in differentiation and apoptosis rates. This
observation provides a rationale for a direct targeting of RE and
c-KIT for therapeutic purposes. Indeed, several approaches
targeting AEtr or c-KIT oncogenic activity and processing have
been reported.14,24,49–52

In conclusion, we propose that activated c-KIT confers
oncogenic cooperativity for RE leading to the selection of
myeloblastic cells with increased progenitor cell characteristics,
an enhanced block in cellular differentiation and resistance to
stress stimuli and DNA-damage signals. The later observation may
also explain the higher relapse rates in c-KIT positive t(8;21)þ
AML patients after conventional chemotherapy.6,53 In addition to
approaches inhibiting the oncogenic activity of RE and c-KIT,
targeting the DNA-damage repair machinery might represent a
new promising path to interfere with t(8;21)-positive leukemia
with activated c-KIT.
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