Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients

Abstract

We evaluated a cocktail of HLA-A2-specific peptides including heteroclitic XBP1 US184–192 (YISPWILAV), heteroclitic XBP1 SP367–375 (YLFPQLISV), native CD138260–268 (GLVGLIFAV) and native CS1239–247 (SLFVLGLFL), for their ability to elicit multipeptide-specific cytotoxic T lymphocytes (MP-CTLs) using T cells from smoldering multiple myeloma (SMM) patients. Our results demonstrate that MP-CTLs generated from SMM patients’ T cells show effective anti-MM responses including CD137 (4-1BB) upregulation, CTL proliferation, interferon-γ production and degranulation (CD107a) in an HLA-A2-restricted and peptide-specific manner. Phenotypically, we observed increased total CD3+CD8+ T cells (>80%) and cellular activation (CD69+) within the memory SMM MP-CTL (CD45RO+/CD3+CD8+) subset after repeated multipeptide stimulation. Importantly, SMM patients could be categorized into distinct groups by their level of MP-CTL expansion and antitumor activity. In high responders, the effector memory (CCR7CD45RO+/CD3+CD8+) T-cell subset was enriched, whereas the remaining responders’ CTL contained a higher frequency of the terminal effector (CCR7CD45RO/CD3+CD8+) subset. These results suggest that this multipeptide cocktail has the potential to induce effective and durable memory MP-CTL in SMM patients. Therefore, our findings provide the rationale for clinical evaluation of a therapeutic vaccine to prevent or delay progression of SMM to active disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Group TIMW. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol 2003; 121: 749–757.

    Article  Google Scholar 

  2. Korde N, Kristinsson SY, Landgren O . Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies. Blood 2011; 117: 5573–5581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cherry BM, Korde N, Kwok M, Manasanch EE, Bhutani M, Mulquin M et al. Modeling progression risk for smoldering multiple myeloma: results from a prospective clinical study. Leuk Lymphoma 2013; 54: 2215–2218.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Agarwal A, Ghobrial IM . Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: a review of the current understanding of epidemiology, biology, risk stratification, and management of myeloma precursor disease. Clin Cancer Res 2013; 19: 985–994.

    Article  PubMed  Google Scholar 

  5. Rajkumar SV, Merlini G, San Miguel JF . Haematological cancer: redefining myeloma. Nat Rev Clin Oncol 2012; 9: 494–496.

    Article  PubMed  Google Scholar 

  6. Hjorth M, Hellquist L, Holmberg E, Magnusson B, Rödjer S, Westin J . Initial versus deferred melphalan-prednisone therapy for asymptomatic multiple myeloma stage I—a randomized study. Eur J Haematol 1993; 50: 95–102.

    Article  CAS  PubMed  Google Scholar 

  7. Musto P, Petrucci MT, Bringhen S, Guglielmelli T, Caravita T, Bongarzoni V et al. A multicenter, randomized clinical trial comparing zoledronic acid versus observation in patients with asymptomatic myeloma. Cancer 2008; 113: 1588–1595.

    Article  PubMed  Google Scholar 

  8. Barlogie B, van Rhee F, Shaughnessy JD Jr, Epstein J, Yaccoby S, Pineda-Roman M et al. Seven-year median time to progression with thalidomide for smoldering myeloma: partial response identifies subset requiring earlier salvage therapy for symptomatic disease. Blood 2008; 112: 3122–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Podar K, Richardson PG, Hideshima T, Chauhan D, Anderson KC . The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol 2007; 20: 597–612.

    Article  CAS  PubMed  Google Scholar 

  10. Dhodapkar MV, Krasovsky J, Osman K, Geller MD . Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 2003; 198: 1753–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuranda K, Berthon C, Dupont C, Wolowiec D, Leleu X, Polakowska R et al. A subpopulation of malignant CD34+CD138+B7-H1+ plasma cells is present in multiple myeloma patients. Exp Hematol 2010; 38: 124–131.

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110: 296–304.

    Article  CAS  PubMed  Google Scholar 

  13. Brimnes MK, Vangsted AJ, Knudsen LM, Gimsing P, Gang AO, Johnsen HE et al. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+ HLA-DRlow myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma. Scand J Immunol 2010; 72: 540–547.

    Article  CAS  PubMed  Google Scholar 

  14. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA et al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 2006; 107: 3940–3949.

    Article  CAS  PubMed  Google Scholar 

  15. Rutella S, Danese S, Leone G . Tolerogenic dendritic cells: cytokine modulation comes of age. Blood 2006; 108: 1435–1440.

    Article  CAS  PubMed  Google Scholar 

  16. Rutella S, Locatelli F . Targeting multiple-myeloma-induced immune dysfunction to improve immunotherapy outcomes. Clin Dev Immunol 2012; 2012: 196063.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kabaker K, Shell K, Kaufman HL . Vaccines for colorectal cancer and renal cell carcinoma. Cancer J 2011; 17: 283–293.

    Article  CAS  PubMed  Google Scholar 

  18. Rezvani K, de Lavallade H . Vaccination strategies in lymphomas and leukaemias: recent progress. Drugs 2011; 71: 1659–1674.

    Article  CAS  PubMed  Google Scholar 

  19. Rousseau C, Ferrer L, Supiot S, Bardiès M, Davodeau F, Faivre-Chauvet A et al. Dosimetry results suggest feasibility of radioimmunotherapy using anti-CD138 (B-B4) antibody in multiple myeloma patients. Tumour Biol 2012; 33: 679–688.

    Article  CAS  PubMed  Google Scholar 

  20. Lonial S, Kaufman J, Laubach J, Richardson P . Elotuzumab: a novel anti-CS1 monoclonal antibody for the treatment of multiple myeloma. Expert Opin Biol Ther 2013; 13: 1731–1740.

    Article  CAS  PubMed  Google Scholar 

  21. Bae J, Smith R, Daley J, Mimura N, Tai YT, Anderson KC et al. Myeloma-specific multiple peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma and other plasma cell disorders. Clin Cancer Res 2012; 18: 4850–4860.

    Article  CAS  PubMed  Google Scholar 

  22. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 2011; 117: 1311–1314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richardson PG, Lonial S, Jakubowiak AJ, Harousseau JL, Anderson KC . Monoclonal antibodies in the treatment of multiple myeloma. Br J Haematol 2011; 154: 745–754.

    Article  CAS  PubMed  Google Scholar 

  24. Jagannath S, Chanan-Khan AA, Heffner LT . BT062, an antibody-drug conjugate directed against CD138, shows clinical activity in a phase I study in patients with relapsed or relapsed/refractory multiple myeloma. Blood (ASH Annual Meeting Abstracts) 2010; 116: 3060.

    Google Scholar 

  25. Bae J, Carrasco R, Lee AH, Prabhala R, Tai YT, Anderson KC et al. Identification of novel myeloma-specific XBP1 peptides able to generate cytotoxic T lymphocytes: a potential therapeutic application in multiple myeloma. Leukemia 2011; 25: 1610–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bae J, Tai YT, Anderson KC, Munshi NC . Novel epitope evoking CD138 antigen-specific cytotoxic T lymphocytes targeting multiple myeloma and other plasma cell disorders. Br J Haematol 2011; 155: 349–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bae J, Song W, Smith R, Daley J, Tai YT, Anderson KC et al. A novel immunogenic CS1-specific peptide inducing antigen-specific cytotoxic T lymphocytes targeting multiple myeloma. Br J Haematol 2012; 157: 687–701.

    Article  CAS  PubMed  Google Scholar 

  28. Zheng Z, Takahashi M, Narita M, Toba K, Liu A, Furukawa T et al. Generation of dendritic cells from adherent cells of cord blood by culture with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha. J Hematother Stem Cell Res 2000; 9: 453–464.

    Article  CAS  PubMed  Google Scholar 

  29. Curtsinger JM, Lins DC, Mescher MF . Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 2003; 197: 1141–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A . Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401: 708–712.

    Article  CAS  PubMed  Google Scholar 

  31. Vinay DS, Kwon BS . Immunotherapy of cancer with 4-1BB. Mol Cancer Ther 2012; 11: 1062–1070.

    Article  CAS  PubMed  Google Scholar 

  32. Slingluff CL Jr, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res 2009; 15: 7036–7044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 2008; 14: 169–177.

    Article  CAS  PubMed  Google Scholar 

  34. Andhavarapu S, Roy V . Immunomodulatory drugs in multiple myeloma. Expert Rev Hematol 2013; 6: 69–82.

    Article  CAS  PubMed  Google Scholar 

  35. van de Donk NW, Görgün G, Groen RW, Jakubikova J, Mitsiades CS, Hideshima T et al. Lenalidomide for the treatment of relapsed and refractory multiple myeloma. Cancer Manag Res 2012; 4: 253–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Noonan K, Rudraraju L, Ferguson A, Emerling A, Pasetti MF, Huff CA et al. Lenalidomide-induced immunomodulation in multiple myeloma: impact on vaccines and antitumor responses. Clin Cancer Res 2012; 18: 1426–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olson JA, Jameson SC . Keeping STATs on memory CD8+ T cells. Immunity 2011; 35: 663–665.

    Article  CAS  PubMed  Google Scholar 

  38. Arens R, Schoenberger SP . Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev 2010; 235: 190–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Junker N, Kvistborg P, Køllgaard T, Straten Pt, Andersen MH, Svane IM . Tumor associated antigen specific T-cell populations identified in ex vivo expanded TIL cultures. Cell Immunol 2012; 273: 1–9.

    Article  CAS  PubMed  Google Scholar 

  40. Dobrzanski MJ, Reome JB, Hylind JC, Rewers-Felkins KA, Abdulsamad K, Adams SL . Ag-specific type 1 CD8 effector cells enhance methotrexate-mediated antitumor responses by modulating endogenous CD49b-expressing CD4 and CD8 T effector cell subpopulations producing IL-10. Immunol Invest 2008; 37: 315–338.

    Article  CAS  PubMed  Google Scholar 

  41. Ye SW, Wang Y, Valmori D, Ayyoub M, Han Y, Xu XL et al. Ex-vivo analysis of CD8+ T cells infiltrating colorectal tumors identifies a major effector-memory subset with low perforin content. J Clin Immunol 2006; 26: 447–456.

    Article  PubMed  Google Scholar 

  42. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005; 353: 2654–2666.

    Article  CAS  PubMed  Google Scholar 

  43. Viganò S, Perreau M, Pantaleo G, Harari A . Positive and negative regulation of cellular immune responses in physiologic conditions and diseases. Clin Dev Immunol 2012; 2012: 485781.

    PubMed  PubMed Central  Google Scholar 

  44. Fearon DT, Manders P, Wagner SD . Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 2001; 293: 248–250.

    Article  CAS  PubMed  Google Scholar 

  45. Pepper M, Pagán AJ, Igyártó BZ, Taylor JJ, Jenkins MK . Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 2011; 35: 583–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 2009; 15: 808–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 2007; 27: 281–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kallies A, Xin A, Belz GT, Nutt SL . Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 2009; 31: 283–295.

    Article  CAS  PubMed  Google Scholar 

  49. Rutella S, Locatelli F . Targeting multiple-myeloma-induced immune dysfunction to improve immunotherapy outcomes. Clin Dev Immunol 2012; 2012: 196063.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tucci M1, Stucci S, Strippoli S, Dammacco F, Silvestris F . Dendritic cells and malignant plasma cells: an alliance in multiple myeloma tumor progression? Oncologist 2011; 16: 1040–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the generous gift of K562-A*0201 cells from Dr P Cresswell (Yale University, New Haven, CT, USA). We also thank Mr J Daley and Ms S Lazo-Kallanian from the Flow Cytometry facility at Dana-Farber Cancer Institute for providing flow cytometry assistance. This work was supported in part by grants from the National Institutes of Health Grants RO1-124929 to Dr NC Munshi, P50-100007, PO1-78378 and PO1155258 to Drs KC Anderson and NC Munshi, and RO1-50947 to Dr KC Anderson. This research was also supported in part by a kind donation from Mr and Mrs Stewart Nagler. Dr KC Anderson is an American Cancer Society Clinical Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Bae.

Ethics declarations

Competing interests

KC Anderson is an advisory board for Celgene, Millennium, Gilead, Sanofi-Aventis and Onyx. NC Munshi serves on the advisory boards of Celgene, Onyx and Johnson & Johnson, and PG Richardson serves on the advisory boards of Celgene, Millennium and Johnson & Johnson. NC Munshi, KC Anderson and J Bae have ownership interest and are advisory board members in OncoPep Inc. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, J., Prabhala, R., Voskertchian, A. et al. A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 29, 218–229 (2015). https://doi.org/10.1038/leu.2014.159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.159

This article is cited by

Search

Quick links