Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene expression profile alone is inadequate in predicting complete response in multiple myeloma

Abstract

With advent of several treatment options in multiple myeloma (MM), a selection of effective regimen has become an important issue. Use of gene expression profile (GEP) is considered an important tool in predicting outcome; however, it is unclear whether such genomic analysis alone can adequately predict therapeutic response. We evaluated the ability of GEP to predict complete response (CR) in MM. GEP from pretreatment MM cells from 136 uniformly treated MM patients with response data on an IFM, France led study were analyzed. To evaluate variability in predictive power due to microarray platform or treatment types, additional data sets from three different studies (n=511) were analyzed using same methods. We used several machine learning methods to derive a prediction model using training and test subsets of the original four data sets. Among all methods employed for GEP-based CR predictive capability, we got accuracy range of 56–78% in test data sets and no significant difference with regard to GEP platforms, treatment regimens or in newly diagnosed or relapsed patients. Importantly, permuted P-value showed no statistically significant CR predictive information in GEP data. This analysis suggests that GEP-based signature has limited power to predict CR in MM, highlighting the need to develop comprehensive predictive model using integrated genomics approach.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Laubach J, Richardson P, Anderson K . Multiple myeloma. Annu Rev Med 2011; 62: 249–264.

    Article  CAS  Google Scholar 

  2. DeVita VT, Hellman S, Rosenberg SA . Cancer, Principles & Practice of Oncology 7th edn Lippincott Williams & Wilkins: Philadelphia, PA, 2005.

    Google Scholar 

  3. Kyle RA, Rajkumar SV . An overview of the progress in the treatment of multiple myeloma. Expert Re Hematol 2014; 7: 5–7.

    Article  CAS  Google Scholar 

  4. Anderson KC . Therapeutic advances in relapsed or refractory multiple myeloma. J Natl Compr Cancer Netw 2013; 11 (5 Suppl): 676–679.

    Article  CAS  Google Scholar 

  5. Ludwig H, Miguel JS, Dimopoulos MA, Palumbo A, Garcia Sanz R, Powles R et al. International Myeloma Working Group recommendations for global myeloma care. Leukemia 2014; 28: 981–992.

    Article  CAS  Google Scholar 

  6. Barlogie B, Shaughnessy J, Tricot G, Jacobson J, Zangari M, Anaissie E et al. Treatment of multiple myeloma. Blood 2004; 103: 20–32.

    Article  CAS  Google Scholar 

  7. Rajkumar SV IV . Initial treatment of multiple myeloma. Hematol Oncol 2013; 31 (Suppl 1): 33–37.

    Article  Google Scholar 

  8. Berenson JR, Yang HH, Vescio RA, Nassir Y, Mapes R, Lee SP et al. Safety and efficacy of bortezomib and melphalan combination in patients with relapsed or refractory multiple myeloma: updated results of a phase 1/2 study after longer follow-up. Ann Hematol 2008; 87: 623–631.

    Article  CAS  Google Scholar 

  9. Gay F, Hayman SR, Lacy MQ, Buadi F, Gertz MA, Kumar S et al. Lenalidomide plus dexamethasone versus thalidomide plus dexamethasone in newly diagnosed multiple myeloma: a comparative analysis of 411 patients. Blood 2010; 115: 1343–1350.

    Article  CAS  Google Scholar 

  10. Jagannath S, Barlogie B, Berenson JR, Siegel DS, Irwin D, Richardson PG et al. Updated survival analyses after prolonged follow-up of the phase 2, multicenter CREST study of bortezomib in relapsed or refractory multiple myeloma. Br J Haematol 2008; 143: 537–540.

    PubMed  Google Scholar 

  11. Munshi NC, Anderson KC . New strategies in the treatment of multiple myeloma. Clin Cancer Res 2013; 19: 3337–3344.

    Article  CAS  Google Scholar 

  12. McCarthy PL, Owzar K, Hofmeister CC, Hurd DD, Hassoun H, Richardson PG et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med 2012; 366: 1770–1781.

    Article  CAS  Google Scholar 

  13. Attal M, Lauwers-Cances V, Marit G, Caillot D, Moreau P, Facon T et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N Engl J Med 2012; 366: 1782–1791.

    Article  CAS  Google Scholar 

  14. Mateos MV, Hernandez MT, Giraldo P, de la Rubia J, de Arriba F, Lopez Corral L et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med 2013; 369: 438–447.

    Article  CAS  Google Scholar 

  15. Barlogie B, Kyle RA, Anderson KC, Greipp PR, Lazarus HM, Hurd DD et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006; 24: 929–936.

    Article  CAS  Google Scholar 

  16. Kyle RA, Rajkumar SV . Treatment of multiple myeloma: a comprehensive review. Clin Lymphoma Myeloma 2009; 9: 278–288.

    Article  CAS  Google Scholar 

  17. Kumar SK, Rajkumar SV . The current status of minimal residual disease assessment in myeloma. Leukemia 2014; 28: 239–240.

    Article  CAS  Google Scholar 

  18. Bergsagel PL, Kuehl WM . Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005; 23: 6333–6338.

    Article  CAS  Google Scholar 

  19. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  Google Scholar 

  20. Ocio EM, Richardson PG, Rajkumar SV, Palumbo A, Mateos MV, Orlowski R et al. New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG). Leukemia 2013; 3: 525–542.

    Google Scholar 

  21. Ghadimi BM, Grade M . Cancer gene profiling for response prediction. Methods Mol Biol 2010; 576: 327–339.

    Article  CAS  Google Scholar 

  22. Jensen EH, McLoughlin JM, Yeatman TJ . Microarrays in gastrointestinal cancer: is personalized prediction of response to chemotherapy at hand? Curr Opin Oncol 2006; 18: 374–380.

    Article  CAS  Google Scholar 

  23. Mariadason JM, Arango D, Shi Q, Wilson AJ, Corner GA, Nicholas C et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res 2003; 63: 8791–8812.

    CAS  PubMed  Google Scholar 

  24. Nagasaki K, Miki Y . Molecular prediction of the therapeutic response to neoadjuvant chemotherapy in breast cancer. Breast Cancer 2008; 15: 117–120.

    Article  Google Scholar 

  25. Schauer M, Janssen KP, Rimkus C, Raggi M, Feith M, Friess H et al. Microarray-based response prediction in esophageal adenocarcinoma. Clin Cancer Res 2010; 16: 330–337.

    Article  CAS  Google Scholar 

  26. Anguiano A, Tuchman SA, Acharya C, Salter K, Gasparetto C, Zhan F et al. Gene expression profiles of tumor biology provide a novel approach to prognosis and may guide the selection of therapeutic targets in multiple myeloma. J Clin Oncol 2009; 27: 4197–4203.

    Article  CAS  Google Scholar 

  27. Decaux O, Lode L, Magrangeas F, Charbonnel C, Gouraud W, Jezequel P et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myelome. J Clin Oncol 2008; 26: 4798–4805.

    Article  CAS  Google Scholar 

  28. Moreaux J, Klein B, Bataille R, Descamps G, Maiga S, Hose D et al. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica 2011; 96: 574–582.

    Article  CAS  Google Scholar 

  29. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  Google Scholar 

  30. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2007; 109: 1692–1700.

    Article  CAS  Google Scholar 

  31. Zhan F, Barlogie B, Mulligan G, Shaughnessy JD Jr, Bryant B . High-risk myeloma: a gene expression based risk-stratification model for newly diagnosed multiple myeloma treated with high-dose therapy is predictive of outcome in relapsed disease treated with single-agent bortezomib or high-dose dexamethasone. Blood 2008; 111: 968–969.

    Article  CAS  Google Scholar 

  32. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007; 109: 3177–3188.

    Article  CAS  Google Scholar 

  33. Minna JD, Girard L, Xie Y . Tumor mRNA expression profiles predict responses to chemotherapy. J Clin Oncol 2007; 25: 4329–4336.

    Article  CAS  Google Scholar 

  34. Kumar SGP, Haug J, Kline M, Chng WJ, Blood E, Bergsagel L et al. Gene expression profiling of myeloma cells at diagnosis can predict response to therapy with thalidomide and dexamethasone combination. Blood 2005, 508.

  35. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 2010; 116: 2543–2553.

    Article  CAS  Google Scholar 

  36. Blade J, Samson D, Reece D, Apperley J, Bjorkstrand B, Gahrton G et al. Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Myeloma Subcommittee of the EBMT. European Group for Blood and Marrow Transplant. Br J Haematol 1998; 102: 1115–1123.

    Article  CAS  Google Scholar 

  37. Li C, Wong WH . Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001; 98: 31–36.

    Article  CAS  Google Scholar 

  38. Purdom E, Simpson KM, Robinson MD, Conboy JG, Lapuk AV, Speed TP . FIRMA: a method for detection of alternative splicing from exon array data. Bioinformatics 2008; 24: 1707–1714.

    Article  CAS  Google Scholar 

  39. Dimitriadou E HK, Leisch F, Meyer D, Weingessel A CRAN - Package e1071 Webcite 2005.

  40. Yip WK, Amin SB, Li C . A survey of classification techniques for microarray data analysis. In: HH-S Lu, B Scholkopf, H Zhao (eds). Handbook of Computational Statistics: Statistical Bioinformatics 2011; pp 193-224 (Chapter 10) http://www.springer.com/statistics/book/978-3-642-16344-9.

    Chapter  Google Scholar 

  41. Perou CM, Jeffrey SS, van de Rijn M, Rees CA, Eisen MB, Ross DT et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci USA 1999; 96: 9212–9217.

    Article  CAS  Google Scholar 

  42. Munshi NC, Anderson KC, Bergsagel PL, Shaughnessy J, Palumbo A, Durie B et al. Consensus recommendations for risk stratification in multiple myeloma: report of the International Myeloma Workshop Consensus Panel 2. Blood 2011; 117: 4696–4700.

    Article  CAS  Google Scholar 

  43. Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood 2007; 109: 3489–3495.

    Article  CAS  Google Scholar 

  44. Dimopoulos M, Kyle R, Fermand JP, Rajkumar SV, San Miguel J, Chanan-Khan A et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 2011; 117: 4701–4705.

    Article  CAS  Google Scholar 

  45. Sorlie T, Perou CM, Fan C, Geisler S, Aas T, Nobel A et al. Gene expression profiles do not consistently predict the clinical treatment response in locally advanced breast cancer. Mol Cancer Ther 2006; 5: 2914–2918.

    Article  CAS  Google Scholar 

  46. Simon R, Radmacher MD, Dobbin K, McShane LM . Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 2003; 95: 14–18.

    Article  CAS  Google Scholar 

  47. Kuiper R, Broyl A, de Knegt Y, van Vliet MH, van Beers EH, van der Holt B et al. A gene expression signature for high-risk multiple myeloma. Leukemia 2012; 26: 2406–2413.

    Article  CAS  Google Scholar 

  48. Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007; 109: 2276–2284.

    Article  CAS  Google Scholar 

  49. Chen Z, Yan B, Van Waes C . The role of the NF-kappaB transcriptome and proteome as biomarkers in human head and neck squamous cell carcinomas. Biomark Med 2008; 2: 409–426.

    Article  CAS  Google Scholar 

  50. Zheng PZ, Wang KK, Zhang QY, Huang QH, Du YZ, Zhang QH et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci USA 2005; 102: 7653–7658.

    Article  CAS  Google Scholar 

  51. Black DL . Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 2003; 72: 291–336.

    Article  CAS  Google Scholar 

  52. David CJ, Manley JL . Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2010; 24: 2343–2364.

    Article  CAS  Google Scholar 

  53. Venables JP . Aberrant and alternative splicing in cancer. Cancer Res 2004; 64: 7647–7654.

    Article  CAS  Google Scholar 

  54. Avet-Loiseau H, Li C, Magrangeas F, Gouraud W, Charbonnel C, Harousseau JL et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol 2009; 27: 4585–4590.

    Article  CAS  Google Scholar 

  55. Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 2010; 116: e56–e65.

    Article  CAS  Google Scholar 

  56. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun 2014; 5: 2997.

    Article  Google Scholar 

  57. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014; 25: 91–101.

    Article  CAS  Google Scholar 

  58. Catchpoole DR, Kennedy P, Skillicorn DB, Simoff S . The curse of dimensionality: a blessing to personalized medicine. J Clin Oncol 2010; 28: e723–e724, ; author reply e725.

    Article  Google Scholar 

  59. Michiels S, Kramar A, Koscielny S . Multidimensionality of microarrays: statistical challenges and (im)possible solutions. Mol Oncol 2011; 5: 190–196.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Department of Veterans Affairs Merit Review Awards I01-BX001584 and from the National Institutes of Health Grants RO1–124929 to NCM., RO1-050947 to KCA, and P50-100007 and PO1-78378 to NCM and KCA, PO1-155258 to NCM, KCA, HAL, SM, CL and PM and R01GM077122 to CL. KCA is an American Cancer Society Clinical Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N C Munshi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, S., Yip, WK., Minvielle, S. et al. Gene expression profile alone is inadequate in predicting complete response in multiple myeloma. Leukemia 28, 2229–2234 (2014). https://doi.org/10.1038/leu.2014.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.140

This article is cited by

Search

Quick links