Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

p53 haploinsufficiency and functional abnormalities in multiple myeloma

Abstract

Hemizygous deletion of 17p13, which harbors the TP53 gene, has been identified in >10% of newly diagnosed multiple myeloma (MM) patients and is associated with poor prognosis. To date, there is no conclusive evidence that TP53 is the critical gene. Furthermore, the functional effect of TP53 haploinsufficiency is not well characterized. By utilizing human myeloma cell lines, we showed that TP53 hemizygous loss was associated with decreased basal expression level with a partially or severely inactivated p53 response upon genotoxic and non-genotoxic stress. The pathway deficiency was manifested as defective p53 transcriptional activities, together with significant resistance to apoptosis. In some cases with p53 WT/− and no p53 protein expression, the remaining allele was silenced by promoter hypermethylation. We also developed a p53 target gene signature to summarize the complexity of the p53 pathway abnormalities in MM and showed that it is strongly associated with genomic complexity and patient survival. In conclusion, this study identified TP53 as the critical gene located in 17p13, and revealed its haploinsufficiency properties in MM. Furthermore, we have elucidated that multiple mechanisms can deregulate the p53 functions and that this has important prognostic impact in MM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Stühmer T, Chatterjee M, Hildebrandt M, Herrmann P, Gollasch H, Gerecke C et al. Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 2005; 106: 3609–3617.

    Article  PubMed  Google Scholar 

  2. Yuregir OO, Sahin FI, Yilmaz Z, Kizilkilic E, Karakus S, Ozdogu H . Fluorescent in situ hybridization studies in multiple myeloma. Hematology 2009; 14: 90–94.

    Article  PubMed  Google Scholar 

  3. Saha MN, Jiang H, Jayakar J, Reece D, Branch DR, Chang H . MDM2 antagonist nutlin plus proteasome inhibitor velcade combination displays a synergistic anti-myeloma activity. Cancer Biol Ther 2010; 9: 937–945.

    Google Scholar 

  4. Drach J, Ackermann J, Fritz E, Kromer E, Schuster R, Gisslinger H et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 1998; 92: 802–809.

    CAS  PubMed  Google Scholar 

  5. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  6. Vousden KH, Lu X . Live or let die: the cell's response to p53. Nat Rev Cancer 2002; 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  7. Chng WJ, Price-Troska T, Gonzalez-Paz N, Van Wier S, Jacobus S, Blood E et al. Clinical significance of TP53 mutation in myeloma. Leukemia 2007; 21: 582–584.

    Article  CAS  PubMed  Google Scholar 

  8. Lode L, Eveillard M, Trichet V, Soussi T, Wuilleme S, Richebourg S et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica 2010; 95: 1973–1976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyd KD, Ross FM, Tapper WJ, Chiecchio L, Dagrada G, Konn ZJ et al. The clinical impact and molecular biology of del(17p) in multiple myeloma treated with conventional or thalidomide-based therapy. Genes Chromosome Cancer 2011; 50: 765–774.

    Article  CAS  Google Scholar 

  10. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101: 4569–4575.

    Article  CAS  PubMed  Google Scholar 

  11. Chen MH, Qi CXY, Saha MN, Chang H . p53 nuclear expression correlates with hemizygous TP53 deletion and predicts an adverse outcome for patients with relapsed/refractory multiple myeloma treated with lenalidomide. Am J Clin Pathol 2012; 137: 208–212.

    Article  CAS  PubMed  Google Scholar 

  12. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res 2012; 41: D991–D995.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pruitt KD, Tatusova T, Brown GR, Maglott DR . NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2011; 40: D130–D135.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chmelarova M, Krepinska E, Spacek J, Laco J, Beranek M, Palicka V . Methylation in the p53 promoter in epithelial ovarian cancer. Clin Trans Oncol 2012; 15: 160–163.

    Article  Google Scholar 

  16. Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T et al. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 2011; 25: 1026–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 2010; 116: 2543–2553.

    Article  CAS  PubMed  Google Scholar 

  19. Mulligan G, Mitsiades C, Bryant B, Zhan F, Chng WJ, Roels S et al. Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 2007; 109: 3177–3188.

    Article  CAS  PubMed  Google Scholar 

  20. Goh AM, Coffill CR, Lane DP . The role of mutant p53 in human cancer. J Pathol 2011; 223: 116–126.

    Article  CAS  PubMed  Google Scholar 

  21. Liu DP, Song H, Xu Y . A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 2010; 29: 949–956.

    Article  CAS  PubMed  Google Scholar 

  22. Lynch CJ, Milner J . Loss of one p53 allele results in four-fold reduction of p53 mRNA and protein: a basis for p53 haplo-insufficiency. Oncogene 2006; 25: 3463–3470.

    Article  CAS  PubMed  Google Scholar 

  23. Saha MN, Jiang H, Chang H . Molecular mechanisms of nutlin-induced apoptosis in multiple myeloma: evidence for p53-transcription-dependent and -independent pathways. Cancer Biol Ther 2010; 10: 567–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saha MN, Micallef J, Qiu LG, Chang H . Pharmacological activation of the p53 pathway in haematological malignancies. J Clin Pathol 2010; 63: 204–209.

    Article  CAS  PubMed  Google Scholar 

  25. Xiong W, Wu XS, Starnes S, Johnson SK, Haessler J, Wang SQ et al. An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood 2008; 112: 4235–4246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuiper R, Broyl A, de Knegt Y, van Vliet MH, van Beers EH, van der Holt B et al. A gene expression signature for high-risk multiple myeloma. Leukemia 2012; 26: 2406–2413.

    Article  CAS  PubMed  Google Scholar 

  27. Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA et al. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res 2005; 65: 4673–4682.

    Article  CAS  PubMed  Google Scholar 

  28. Chim CS, Kwong YL, Liang R . Gene hypermethylation in multiple myeloma: lessons from a cancer pathway approach. Clin Lymphoma Myeloma 2008; 8: 331–339.

    Article  CAS  PubMed  Google Scholar 

  29. Kaiser MF, Johnson DC, Wu P, Walker BA, Brioli A, Mirabella F et al. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood 2013; 122: 219–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang H, Qi C, Yi QL, Reece D, Stewart AK . p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood 2005; 105: 358–360.

    Article  CAS  PubMed  Google Scholar 

  31. Chang H, Sloan S, Li D, Keith Stewart A . Multiple myeloma involving central nervous system: high frequency of chromosome 17p13.1 (p53) deletions. Br J Haematol 2004; 127: 280–284.

    Article  CAS  PubMed  Google Scholar 

  32. Ohnstad HO, Castro R, Sun J, Heintz KM, Vassilev LT, Bjerkehagen B et al. Correlation of TP53 and MDM2 genotypes with response to therapy in sarcoma. Cancer 2013; 119: 1013–1022.

    Article  CAS  PubMed  Google Scholar 

  33. Okamoto H, Fujishima F, Nakamura Y, Zuguchi M, Miyata G, Kamei T et al. Murine double minute 2 and its association with chemoradioresistance of esophageal squamous cell carcinoma. Anticancer Res 2013; 33: 1463–1471.

    CAS  PubMed  Google Scholar 

  34. Shangary S, Wang S . Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res 2008; 14: 5318–5324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy. Proc Natl Acad Sci U SA 2006; 103: 1888–1893.

    Article  CAS  Google Scholar 

  36. Hanel W, Moll UM . Links between mutant p53 and genomic instability. J Cell Biochem 2012; 113: 433–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brusa G, Benvenuti M, Mazzacurati L, Mancini M, Pattacini L, Martinelli G et al. p53 loss of function enhances genomic instability and accelerates clonal evolution of murine myeloid progenitors expressing the p(210)BCR-ABL tyrosine kinase. Haematologica 2003; 88: 622–630.

    CAS  PubMed  Google Scholar 

  38. Elnenaei MO, Gruszka-Westwood AM, A'Hernt R, Matutes E, Sirohi B, Powles R et al. Gene abnormalities in multiple myeloma; the relevance of TP53, MDM2, and CDKN2A. Haematologica 2003; 88: 529–537.

    CAS  PubMed  Google Scholar 

  39. Venkatachalam S, Tyner S, Pickering C, Boley S, Recio L, French J et al. Is p53 Haploinsufficient for tumor suppression? Implications for the p53 +/− mouse model in carcinogenicity testing. Toxicol Pathol 2001; 29: 147–154.

    Article  CAS  PubMed  Google Scholar 

  40. Venkatachalam S, Shi YP, Jones SN, Vogel H, Bradley A, Pinkel D et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J 1998; 17: 4657–4667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–852.

    Article  CAS  PubMed  Google Scholar 

  42. Xiong W, Zhan FH, Huang YS, Barlogie B, Shaughnessy JD . TP53 gene expression, correlated with 17p13 deletion, is a significant and independent adverse prognostic factor in multiple myeloma treated with high-dose therapy and auto-transplants. Blood 2006; 108: 3394.

    Google Scholar 

  43. Braggio E, Maiolino A, Gouveia ME, Magalhaes R, Souto Filho JT, Garnica M et al. Methylation status of nine tumor suppressor genes in multiple myeloma. Int J Hematol 2010; 91: 87–96.

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez M, Mateos MV, Garcia-Sanz R, Balanzategui A, Lopez-Perez R, Chillon MC et al. De novo methylation of tumor suppressor gene p16/INK4a is a frequent finding in multiple myeloma patients at diagnosis. Leukemia 2000; 14: 183–187.

    Article  CAS  PubMed  Google Scholar 

  45. Chim CS, Kwong YL, Fung TK, Liang R . Methylation profiling in multiple myeloma. Leuk Res 2004; 28: 379–385.

    Article  CAS  PubMed  Google Scholar 

  46. Galm O, Wilop S, Reichelt J, Jost E, Gehbauer G, Herman JG et al. DNA methylation changes in multiple myeloma. Leukemia 2004; 18: 1687–1692.

    Article  CAS  PubMed  Google Scholar 

  47. Hurt EM, Thomas SB, Peng B, Farrar WL . Reversal of p53 epigenetic silencing in multiple myeloma permits apoptosis by a p53 activator. Cancer Biol Ther 2006; 5 (9): 1154–1160.

    Article  CAS  PubMed  Google Scholar 

  48. Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010; 18: 367–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teoh G, Urashima M, Ogata A, Chauhan D, DeCaprio JA, Treon SP et al. MDM2 protein overexpression promotes proliferation and survival of multiple myeloma cells. Blood 1997; 90: 1982–1992.

    CAS  PubMed  Google Scholar 

  50. Saha MN, Jayakar J, Chang H . Nutlin-3 and Velcade synergistically induce cell cycle arrest and apoptosis in multiple myeloma through activation of p53 pathway. Modern Pathol 2009; 22: 1287.

    Article  Google Scholar 

Download references

Acknowledgements

WJC is supported by NMRC Clinician Scientist Investigator award. This work is partly supported by Singapore Cancer Syndicate Grant. This research is supported by the National Research Foundation Singapore and the Singapore Ministry of Education under the Research Centers of Excellence initiative. Rafael Fonseca is a Clinical Investigator of the Damon Runyon Cancer Research Fund. This work is supported by grants SPORE CA90297052, P01 CA62242, R01 CA83724, ECOG CA 21115 T, Predolin Foundation, Mayo Clinic Cancer Center and the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W J Chng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teoh, P., Chung, T., Sebastian, S. et al. p53 haploinsufficiency and functional abnormalities in multiple myeloma. Leukemia 28, 2066–2074 (2014). https://doi.org/10.1038/leu.2014.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.102

This article is cited by

Search

Quick links