Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis

Abstract

In multiple myeloma (MM), angiogenesis is strongly correlated to disease progression and unfavorable outcome, and may be promoted by bone marrow hypoxia. Employing gene-expression profiling, we here identified the pro-angiogenic factor adrenomedullin (AM) as the most highly upregulated gene in MM cells exposed to hypoxia. Malignant plasma cells from the majority of MM patients, belonging to distinct genetic subgroups, aberrantly express AM. Already under normoxic conditions, a subset of MM highly expressed and secreted AM, which could not be further enhanced by hypoxia or cobalt chloride-induced stabilization of hypoxia-inducible factor (HIF)1α. In line with this, expression of AM did not correlate with expression of a panel of established hypoxia-/HIF1α-target genes in MM patients. We demonstrate that MM-driven promotion of endothelial cell proliferation and tube formation is augmented by inducible expression of AM and strongly repressed by inhibition of endogenous and hypoxia-induced AM activity. Together, our results demonstrate that MM cells, both in a hypoxia-dependent and -independent fashion, aberrantly express and secrete AM, which can mediate MM-induced angiogenesis. Thus, AM secretion can be a major driving force for the angiogenic switch observed during MM evolution, which renders AM a putative target for MM therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kuehl WM, Bergsagel PL . Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002; 2: 175–187.

    Article  CAS  PubMed  Google Scholar 

  2. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  3. Vacca A, Ribatti D . Bone marrow angiogenesis in multiple myeloma. Leukemia 2006; 20: 193–199.

    Article  CAS  PubMed  Google Scholar 

  4. Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S . Angiogenesis and multiple myeloma. Cancer Microenviron 2011; 4: 325–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rana C, Sharma S, Agrawal V, Singh U . Bone marrow angiogenesis in multiple myeloma and its correlation with clinicopathological factors. Ann Hematol 2010; 89: 789–794.

    Article  PubMed  Google Scholar 

  6. Bhatti SS, Kumar L, Dinda AK, Dawar R . Prognostic value of bone marrow angiogenesis in multiple myeloma: use of light microscopy as well as computerized image analyzer in the assessment of microvessel density and total vascular area in multiple myeloma and its correlation with various clinical, histological, and laboratory parameters. Am J Hematol 2006; 81: 649–656.

    Article  PubMed  Google Scholar 

  7. Sezer O, Niemoller K, Kaufmann O, Eucker J, Jakob C, Zavrski I et al. Decrease of bone marrow angiogenesis in myeloma patients achieving a remission after chemotherapy. Eur J Haematol 2001; 66: 238–244.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE et al. Bone marrow angiogenesis in multiple myeloma: effect of therapy. Br J Haematol 2002; 119: 665–671.

    Article  CAS  PubMed  Google Scholar 

  9. Ribatti D, Nico B, Vacca A . Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 2006; 25: 4257–4266.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK et al. Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 2004; 104: 1159–1165.

    Article  CAS  PubMed  Google Scholar 

  11. Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A et al. Induction of angiogenesis by normal and malignant plasma cells. Blood 2009; 114: 128–143.

    Article  CAS  PubMed  Google Scholar 

  12. Martin SK, Diamond P, Gronthos S, Peet DJ, Zannettino AC . The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011; 25: 1533–1542.

    Article  CAS  PubMed  Google Scholar 

  13. Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, Lazzaretti M et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1alpha overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia 2010; 24: 1967–1970.

    Article  CAS  PubMed  Google Scholar 

  14. Asosingh K, De Raeve H, de Ridder M, Storme GA, Willems A, Van Riet I et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 2005; 90: 810–817.

    CAS  PubMed  Google Scholar 

  15. Zhang J, Sattler M, Tonon G, Grabher C, Lababidi S, Zimmerhackl A et al. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res 2009; 69: 5082–5090.

    Article  CAS  PubMed  Google Scholar 

  16. Giatromanolaki A, Bai M, Margaritis D, Bourantas KL, Koukourakis MI, Sivridis E et al. Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Res 2010; 30: 2831–2836.

    CAS  PubMed  Google Scholar 

  17. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reijmers RM, Groen RW, Rozemuller H, Kuil A, de Haan-Kramer A, Csikós T et al. Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma. Blood 2010; 115: 601–604.

    Article  CAS  PubMed  Google Scholar 

  20. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M . A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2007; 2: 481–485.

    Article  CAS  PubMed  Google Scholar 

  21. Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 2004; 101: 6122–6127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martínez A, Julián M, Bregonzio C, Notari L, Moody TW, Cuttitta F . Identification of vasoactive nonpeptidic positive and negative modulators of adrenomedullin using a neutralizing antibody-based screening strategy. Endocrinology 2004; 145: 3858–3865.

    Article  PubMed  Google Scholar 

  23. Huang da W, Sherman BT, Lempicki RA . Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1–13.

    Article  PubMed  Google Scholar 

  24. Takenaga K . Angiogenic signaling aberrantly induced by tumor hypoxia. Front Biosci 2011; 16: 31–48.

    Article  CAS  Google Scholar 

  25. Ouafik L, Sauze S, Boudouresque F, Chinot O, Delfino C, Fina F et al. Neutralization of adrenomedullin inhibits the growth of human glioblastoma cell lines in vitro and suppresses tumor xenograft growth in vivo. Am J Pathol 2002; 160: 1279–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oehler MK, Hague S, Rees MC, Bicknell R . Adrenomedullin promotes formation of xenografted endometrial tumors by stimulation of autocrine growth and angiogenesis. Oncogene 2002; 21: 2815–2821.

    Article  CAS  PubMed  Google Scholar 

  27. Kaafarani I, Fernandez-Sauze S, Berenguer C, Chinot O, Delfino C, Dussert C et al. Targeting adrenomedullin receptors with systemic delivery of neutralizing antibodies inhibits tumor angiogenesis and suppresses growth of human tumor xenografts in mice. FASEB J 2009; 23: 3424–3435.

    Article  CAS  PubMed  Google Scholar 

  28. Ishikawa T, Chen J, Wang J, Okada F, Sugiyama T, Kobayashi T et al. Adrenomedullin antagonist suppresses in vivo growth of human pancreatic cancer cells in SCID mice by suppressing angiogenesis. Oncogene 2003; 22: 1238–1242.

    Article  CAS  PubMed  Google Scholar 

  29. Deville JL, Salas S, Figarella-Branger D, Ouafik L, Daniel L . Adrenomedullin as a therapeutic target in angiogenesis. Expert Opin Ther Targets 2010; 14: 1059–1072.

    Article  CAS  PubMed  Google Scholar 

  30. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ . An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 2009; 37: 4587–4602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu F, White SB, Zhao Q, Lee FS . HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA 2001; 98: 9630–9635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tabruyn SP, Griffioen AW, NF-kappa B . a new player in angiostatic therapy. Angiogenesis 2008; 11: 101–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmidt D, Textor B, Pein OT, Licht AH, Andrecht S, Sator-Schmitt M et al. Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO J 2007; 26: 710–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ . Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 2001; 20: 4188–4197.

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi K, Nakayama M, Totsune K, Murakami O, Sone M, Kitamuro T et al. Increased secretion of adrenomedullin from cultured human astrocytes by cytokines. J Neurochem 2000; 74: 99–103.

    Article  CAS  PubMed  Google Scholar 

  36. Sugo S, Minamino N, Shoji H, Kangawa K, Kitamura K, Eto T et al. Production and secretion of adrenomedullin from vascular smooth muscle cells: augmented production by tumor necrosis factor-alpha. Biochem Biophys Res Commun 1994; 203: 719–726.

    Article  CAS  PubMed  Google Scholar 

  37. Horio T, Nishikimi T, Yoshihara F, Nagaya N, Matsuo H, Takishita S et al. Production and secretion of adrenomedullin in cultured rat cardiac myocytes and nonmyocytes: stimulation by interleukin-1beta and tumor necrosis factor-alpha. Endocrinology 1998; 139: 4576–4580.

    Article  CAS  PubMed  Google Scholar 

  38. Care A, Felicetti F, Meccia E, Bottero L, Parenza M, Stoppacciaro A et al. HOXB7: a key factor for tumor-associated angiogenic switch. Cancer Res 2001; 61: 6532–6539.

    CAS  PubMed  Google Scholar 

  39. Storti P, Donofrio G, Colla S, Airoldi I, Bolzoni M, Agnelli L et al. HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients. Leukemia 2011; 25: 527–537.

    Article  CAS  PubMed  Google Scholar 

  40. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E et al. The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 2004; 428: 328–332.

    Article  CAS  PubMed  Google Scholar 

  41. Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D et al. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 2007; 110: 4464–4475.

    Article  CAS  PubMed  Google Scholar 

  42. Garayoa M, Martinez A, Lee S, Pío R, An WG, Neckers L et al. Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol 2000; 14: 848–862.

    Article  CAS  PubMed  Google Scholar 

  43. Jakob C, Sterz J, Zavrski I, Heider U, Kleeberg L, Fleissner C et al. Angiogenesis in multiple myeloma. Eur J Cancer 2006; 42: 1581–1590.

    Article  CAS  PubMed  Google Scholar 

  44. Kim W, Moon SO, Sung MJ, Kim SH, Lee S, So JN et al. Angiogenic role of adrenomedullin through activation of Akt, mitogen-activated protein kinase, and focal adhesion kinase in endothelial cells. FASEB J 2003; 17: 1937–1939.

    Article  CAS  PubMed  Google Scholar 

  45. Caron KM, Smithies O . Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci USA 2001; 98: 615–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martinez A, Vos M, Guedez L, Kaur G, Chen Z, Garayoa M et al. The effects of adrenomedullin overexpression in breast tumor cells. J Natl Cancer Inst 2002; 94: 1226–1237.

    Article  CAS  PubMed  Google Scholar 

  47. Ramachandran V, Arumugam T, Hwang RF, Greenson JK, Simeone DM, Logsdon CD . Adrenomedullin is expressed in pancreatic cancer and stimulates cell proliferation and invasion in an autocrine manner via the adrenomedullin receptor, ADMR. Cancer Res 2007; 67: 2666–2675.

    Article  CAS  PubMed  Google Scholar 

  48. Fernandez-Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM et al. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer 2004; 108: 797–804.

    Article  CAS  PubMed  Google Scholar 

  49. Guidolin D, Albertin G, Spinazzi R, Sorato E, Mascarin A, Cavallo D et al. Adrenomedullin stimulates angiogenic response in cultured human vascular endothelial cells: involvement of the vascular endothelial growth factor receptor 2. Peptides 2008; 29: 2013–2023.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Cuttitta for kindly providing AM inhibitors.

Author Contributions

KAK designed the research, performed experiments, analyzed the data, designed the figures, and wrote the manuscript; AdHK and HvA performed experiments. MJK provided MM patient samples and reviewed the manuscript. KM and RV. performed experiments and analyzed data. STP and MS designed the research, supervised the study, analyzed the data, and wrote and revised the manuscript.

Disclaimer

The study involving human biopsy samples was conducted in accordance with the Declaration of Helsinki and approved by the local ethics committee of the University of Amsterdam, AIEC (Algemene Instellingsgebonden Ethische Commissie). Patients gave written informed consent for the sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S T Pals.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocemba, K., van Andel, H., de Haan-Kramer, A. et al. The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia 27, 1729–1737 (2013). https://doi.org/10.1038/leu.2013.76

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.76

Keywords

This article is cited by

Search

Quick links