Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Gads (Grb2-related adaptor downstream of Shc) is required for BCR-ABL-mediated lymphoid leukemia

Abstract

Philadelphia chromosome-positive leukemias, including chronic myeloid leukemia and B-cell acute lymphoblastic leukemia (B-ALL), are driven by the oncogenic BCR-ABL fusion protein. Animal modeling experiments utilizing retroviral transduction and subsequent bone marrow transplantation have demonstrated that BCR-ABL generates both myeloid and lymphoid disease in mice receiving whole bone marrow transduced with BCR-ABL. Y177 of BCR-ABL is critical to the development of myeloid disease, and phosphorylation of Y177 has been shown to induce GRB2 binding to BCR-ABL, followed by activation of the Ras and phosphoinositide 3 kinase signaling pathways. We show that the GRB2-related adapter protein, GADS, also associates with BCR-ABL, specifically through Y177 and demonstrate that BCR-ABL-driven lymphoid disease requires Gads. BCR-ABL transduction of Gads(−/−) bone marrow results in short latency myeloid disease within 3–4 weeks of transplant, while wild-type mice succumb to both a longer latency lymphoid and myeloid diseases. We report that GADS mediates a unique BCR-ABL complex with SLP-76 in BCR-ABL-positive cell lines and B-ALL patient samples. These data suggest that GADS mediates lymphoid disease downstream of BCR-ABL through the recruitment of specific signaling intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Nowell PC, Hungerford DA . Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 1960; 25: 85–109.

    CAS  PubMed  Google Scholar 

  2. Rowley JD . Chromosomal patterns in myelocytic leukemia. N Engl J Med 1973; 289: 220–221.

    CAS  PubMed  Google Scholar 

  3. Sawyers CL . Chronic myeloid leukemia. N Engl J Med 1999; 340: 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  4. O'Hare T, Zabriskie MS, Eiring AM, Deininger MW . Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer 2012; 12: 513–526.

    Article  CAS  PubMed  Google Scholar 

  5. Konopka JB, Watanabe SM, Witte ON . An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 1984; 37: 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong SA, Look AT . Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005; 23: 6306–6315.

    Article  CAS  PubMed  Google Scholar 

  7. Daley GQ, Van Etten RA, Baltimore D . Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 1990; 247: 824–830.

    Article  CAS  PubMed  Google Scholar 

  8. Kelliher MA, McLaughlin J, Witte ON, Rosenberg N . Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci USA 1990; 87: 6649–6653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li S, Ilaria RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 2002; 99: 2957–2968.

    Article  CAS  PubMed  Google Scholar 

  11. Million RP, Van Etten RA . The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000; 96: 664–670.

    CAS  PubMed  Google Scholar 

  12. Zhang X, Subrahmanyam R, Wong R, Gross AW, Ren R . The NH(2)-terminal coiled-coil domain and tyrosine 177 play important roles in induction of a myeloproliferative disease in mice by Bcr-Abl. Mol Cell Biol 2001; 21: 840–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    Article  CAS  PubMed  Google Scholar 

  14. Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–185.

    Article  CAS  PubMed  Google Scholar 

  15. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. Embo J 1994; 13: 764–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995; 86: 726–736.

    CAS  PubMed  Google Scholar 

  17. Gishizky ML, Cortez D, Pendergast AM . Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation. Proc Natl Acad Sci USA 1995; 92: 10889–10893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu SK, McGlade CJ . Gads is a novel SH2 and SH3 domain-containing adaptor protein that binds to tyrosine-phosphorylated Shc. Oncogene 1998; 17: 3073–3082.

    Article  CAS  PubMed  Google Scholar 

  19. Preisinger C, Kolch W . The Bcr-Abl kinase regulates the actin cytoskeleton via a GADS/Slp-76/Nck1 adaptor protein pathway. Cell Signal 2010; 22: 848–856.

    Article  CAS  PubMed  Google Scholar 

  20. Feng GS, Ouyang YB, Hu DP, Shi ZQ, Gentz R, Ni J . Grap is a novel SH3-SH2-SH3 adaptor protein that couples tyrosine kinases to the Ras pathway. J Biol Chem 1996; 271: 12129–12132.

    Article  CAS  PubMed  Google Scholar 

  21. Asada H, Ishii N, Sasaki Y, Endo K, Kasai H, Tanaka N et al. Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J Exp Med 1999; 189: 1383–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 1992; 70: 431–442.

    Article  CAS  PubMed  Google Scholar 

  23. Liu SK, Fang N, Koretzky GA, McGlade CJ . The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr Biol 1999; 9: 67–75.

    Article  CAS  PubMed  Google Scholar 

  24. Yoder J, Pham C, Iizuka YM, Kanagawa O, Liu SK, McGlade J et al. Requirement for the SLP-76 adaptor GADS in T cell development. Science 2001; 291: 1987–1991.

    Article  CAS  PubMed  Google Scholar 

  25. Clements JL, Yang B, Ross-Barta SE, Eliason SL, Hrstka RF, Williamson RA et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 1998; 281: 416–419.

    Article  CAS  PubMed  Google Scholar 

  26. Law CL, Ewings MK, Chaudhary PM, Solow SA, Yun TJ, Marshall AJ et al. GrpL, a Grb2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J Exp Med 1999; 189: 1243–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu SK, Berry DM, McGlade CJ . The role of Gads in hematopoietic cell signalling. Oncogene 2001; 20: 6284–6290.

    Article  CAS  PubMed  Google Scholar 

  28. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004; 36: 453–461.

    Article  CAS  PubMed  Google Scholar 

  29. Arico M, Valsecchi MG, Camitta B, Schrappe M, Chessells J, Baruchel A et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med 2000; 342: 998–1006.

    Article  CAS  PubMed  Google Scholar 

  30. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  31. Brandwein JM . Treatment of acute lymphoblastic leukemia in adolescents and young adults. Curr Oncol Rep 2011; 13: 371–378.

    Article  CAS  PubMed  Google Scholar 

  32. Fullmer A, Kantarjian H, Cortes J, Jabbour E . New developments in the treatment of chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia. Leuk Lymphoma 2011; 52 (Suppl 1): 81–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pear WS, Miller JP, Xu L, Pui JC, Soffer B, Quackenbush RC et al. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 1998; 92: 3780–3792.

    CAS  PubMed  Google Scholar 

  34. Ho JM, Beattie BK, Squire JA, Frank DA, Barber DL . Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood 1999; 93: 4354–4364.

    CAS  PubMed  Google Scholar 

  35. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  36. Kuriyama K, Gale RP, Tomonaga M, Ikeda S, Yao E, Klisak I et al. CML-T1: a cell line derived from T-lymphocyte acute phase of chronic myelogenous leukemia. Blood 1989; 74: 1381–1387.

    CAS  PubMed  Google Scholar 

  37. Lozzio CB, Lozzio BB . Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975; 45: 321–334.

    CAS  PubMed  Google Scholar 

  38. Raskind WH, Disteche CM, Keating A, Singer JW . Correlation between cytogenetic and molecular findings in human chronic myelogenous leukemia lines EM-2 and EM-3. Cancer Genet Cytogenet 1987; 25: 271–284.

    Article  CAS  PubMed  Google Scholar 

  39. Blom T, Nilsson G, Sundstrom C, Nilsson K, Hellman L . Characterization of a human basophil-like cell line (LAMA-84). Scand J Immunol 1996; 44: 54–61.

    Article  CAS  PubMed  Google Scholar 

  40. Okabe M, Kunieda Y, Nakane S, Kurosawa M, Itaya T, Vogler WR et al. Establishment and characterization of a new Ph1-positive chronic myeloid leukemia cell line MC3 with trilineage phenotype and an altered p53 gene. Leuk Lymphoma 1995; 16: 493–503.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 1998; 95: 793–803.

    Article  CAS  PubMed  Google Scholar 

  42. Pauker MH, Reicher B, Fried S, Perl O, Barda-Saad M . Functional cooperation between the proteins Nck and ADAP is fundamental for actin reorganization. Mol Cell Biol 2011; 31: 2653–2666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McWhirter JR, Wang JY . Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol Cell Biol 1991; 11: 1553–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Etten RA, Jackson PK, Baltimore D, Sanders MC, Matsudaira PT, Janmey PA . The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J Cell Biol 1994; 124: 325–340.

    Article  CAS  PubMed  Google Scholar 

  45. Wertheim JA, Perera SA, Hammer DA, Ren R, Boettiger D, Pear WS . Localization of BCR-ABL to F-actin regulates cell adhesion but does not attenuate CML development. Blood 2003; 102: 2220–2228.

    Article  CAS  PubMed  Google Scholar 

  46. Heisterkamp N, Voncken JW, Senadheera D, Gonzalez-Gomez I, Reichert A, Haataja L et al. Reduced oncogenicity of p190 Bcr/Abl F-actin-binding domain mutants. Blood 2000; 96: 2226–2232.

    CAS  PubMed  Google Scholar 

  47. Ebinu JO, Stang SL, Teixeira C, Bottorff DA, Hooton J, Blumberg PM et al. RasGRP links T-cell receptor signaling to Ras. Blood 2000; 95: 3199–3203.

    CAS  PubMed  Google Scholar 

  48. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2012; 40, Database issue D261–D270.

    Article  CAS  PubMed  Google Scholar 

  49. Li S, Couvillon AD, Brasher BB, Van Etten RA . Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor receptor: a novel regulatory mechanism for tyrosine kinase signaling. Embo J 2001; 20: 6793–6804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yankee TM, Draves KE, Clark EA . Expression and function of the adaptor protein Gads in murine B cells. Eur J Immunol 2005; 35: 1184–1192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Renu Sarao and Amanda Luck for animal colony management and Mojib Javadi for final figure preparation. This research was supported by operating funds from Leukemia and Lymphoma Society of Canada (to CJM and DLB) and Canadian Institutes of Health Research—MOP#12859 (CJM) and MOP#42428 (DLB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C J McGlade or D L Barber.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillis, L., Berry, D., Minden, M. et al. Gads (Grb2-related adaptor downstream of Shc) is required for BCR-ABL-mediated lymphoid leukemia. Leukemia 27, 1666–1676 (2013). https://doi.org/10.1038/leu.2013.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.40

Keywords

This article is cited by

Search

Quick links