Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Immunotherapy for chronic lymphocytic leukemia in the era of BTK inhibitors

Abstract

Understanding the pathogenesis of CLL has uncovered a plethora of novel targets for human application of monoclonal antibodies, engineered T cells, or inhibitors of signal transduction pathways. The B-cell receptor signaling pathway is being actively explored as a therapeutic target in CLL. Ibrutinib, an inhibitor of Bruton’s tyrosine kinase is showing impressive responses in heavily pre-treated high-risk CLL, whether alone or in combination with MoAbs or chemotherapy. Other key components of the BCR pathway, namely PI3K-δ, are also being targeted with novel therapies with promising results as well. Future trials would likely evaluate ibrutinib in the front-line setting. Moreover, improvements in allogeneic HCT mostly by continuing to reduce associated toxicity as well as incorporating cellular therapies such as autologous CLL tumor vaccines, among others, will continue to expand. This is also the case for the next generation of chimeric antigen receptor therapy for CLL once genetically modified T cells are available at broad scale and with improved efficacy. As our ability to further refine and integrate these therapies continues to improve, and we gain further knowledge from gene sequencing, we anticipate that treatment algorithms will continue to be revised to a more personalized approach to treat this disease with improved efficacy and devoid of unnecessary toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Foon KA, Hallek MJ . Changing paradigms in the treatment of chronic lymphocytic leukemia. Leukemia 2010; 24: 500–511.

    CAS  PubMed  Google Scholar 

  2. Gribben JG, O’Brien S . Update on therapy of chronic lymphocytic leukemia. J Clin Oncol 2011; 29: 544–550.

    PubMed  PubMed Central  Google Scholar 

  3. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kharfan-Dabaja MA, Fahed R, Hussein M, Santos ES . Evolving role of monoclonal antibodies in the treatment of chronic lymphocytic leukemia. Expert Opin Investig Drugs 2007; 16: 1799–1815.

    CAS  PubMed  Google Scholar 

  5. Jain N, O'Brien S . Ibrutinib (PCI-32765) in chronic lymphocytic leukemia. Hematol Oncol Clin North Am 2013; 27: 851–860.

    PubMed  PubMed Central  Google Scholar 

  6. Furman RR, Byrd JC, Brown JR, Coutre SE, Benson DM Jr, Wagner-Johnston ND et al. CAL-101, An isoform-selective inhibitor of phosphatidylinositol 3-kinase P110{delta}, demonstrates clinical activity and pharmacodynamic effects in patients with relapsed or refractory chronic lymphocytic leukemia. ASH Ann Meet Abstr 2010; 116: 55.

    Google Scholar 

  7. Keating MJ, O'Brien S, Albitar M, Lerner S, Plunkett W, Giles F et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 4079–4088.

    CAS  PubMed  Google Scholar 

  8. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010; 376: 1164–1174.

    Article  CAS  PubMed  Google Scholar 

  9. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant 2009; 15: 1628–1633.

    PubMed  PubMed Central  Google Scholar 

  10. Sorror ML, Storer BE, Sandmaier BM, Maris M, Shizuru J, Maziarz R et al. Five-year follow-up of patients with advanced chronic lymphocytic leukemia treated with allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. J Clin Oncol 2008; 26: 4912–4920.

    PubMed  PubMed Central  Google Scholar 

  11. Ritgen M, Bottcher S, Stilgenbauer S, Bunjes D, Schubert J, Cohen S et al. Quantitative MRD monitoring identifies distinct GVL response patterns after allogeneic stem cell transplantation for chronic lymphocytic leukemia: results from the GCLLSG CLL3X trial. Leukemia 2008; 22: 1377–1386.

    CAS  PubMed  Google Scholar 

  12. Dreger P, Dohner H, Ritgen M, Bottcher S, Busch R, Dietrich S et al. Allogeneic stem cell transplantation provides durable disease control in poor-risk chronic lymphocytic leukemia: long-term clinical and MRD results of the German CLL Study Group CLL3X trial. Blood 2010; 116: 2438–2447.

    CAS  PubMed  Google Scholar 

  13. Brown JR, Kim HT, Armand P, Cutler C, Fisher DC, Ho V et al. Long-term follow-up of reduced-intensity allogeneic stem cell transplantation for chronic lymphocytic leukemia: prognostic model to predict outcome. Leukemia 2013; 27: 362–369.

    CAS  PubMed  Google Scholar 

  14. Kharfan-Dabaja MA, Bazarbachi A . Hematopoietic stem cell allografting for chronic lymphocytic leukemia: a focus on reduced-intensity conditioning regimens. Cancer Control 2012; 19: 68–75.

    PubMed  Google Scholar 

  15. Buggy JJ, Elias L . Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol 2012; 31: 119–132.

    CAS  PubMed  Google Scholar 

  16. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A 2010; 107: 13075–13080.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown JR, Furman RR, Flinn I, Coutre SE, Wagner-Johnston ND, Kahl BS et al. Final results of a phase I study of idelalisib (GSE1101) a selective inhibitor of PI3K{delta}, in patients with relapsed or refractory CLL. ASCO Meeting Abstracts 2013; 31 (15_suppl): 7003.

    Google Scholar 

  18. Porter DL, Levine BL, Kalos M, Bagg A, June CH . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Giordano Attianese GM, Marin V, Hoyos V, Savoldo B, Pizzitola I, Tettamanti S et al. In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor. Blood 2011; 117: 4736–4745.

    PubMed  PubMed Central  Google Scholar 

  20. Wierda W, O'Brien S, Wen S, Faderl S, Garcia-Manero G, Thomas D et al. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 4070–4078.

    CAS  PubMed  Google Scholar 

  21. Goede V, Fischer K, Busch R, Jaeger U, Dilhuydy MS, Wickham N et al. Chemoimmunotherapy with GA101 plus chlorambucil in patients with chronic lymphocytic leukemia and comorbidity: results of the CLL11 (BO21004) safety run-in. Leukemia 2013; 27: 1172–1174.

    CAS  PubMed  Google Scholar 

  22. Elter T, James R, Busch R, Winkler D, Ritgen M, Bottcher S et al. Fludarabine and cyclophosphamide in combination with alemtuzumab in patients with primary high-risk, relapsed or refractory chronic lymphocytic leukemia. Leukemia 2012; 26: 2549–2552.

    CAS  PubMed  Google Scholar 

  23. Kay NE, Geyer SM, Call TG, Shanafelt TD, Zent CS, Jelinek DF et al. Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood 2007; 109: 405–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lamanna N, Kalaycio M, Maslak P, Jurcic JG, Heaney M, Brentjens R et al. Pentostatin, cyclophosphamide, and rituximab is an active, well-tolerated regimen for patients with previously treated chronic lymphocytic leukemia. J Clin Oncol 2006; 24: 1575–1581.

    CAS  PubMed  Google Scholar 

  25. Castro JE, James DF, Sandoval-Sus JD, Jain S, Bole J, Rassenti L et al. Rituximab in combination with high-dose methylprednisolone for the treatment of chronic lymphocytic leukemia. Leukemia 2009; 23: 1779–1789.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. O'Brien SM, Kantarjian H, Thomas DA, Giles FJ, Freireich EJ, Cortes J et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol 2001; 19: 2165–2170.

    CAS  PubMed  Google Scholar 

  27. Teeling JL, Mackus WJ, Wiegman LJ, van den Brakel JH, Beers SA, French RR et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006; 177: 362–371.

    CAS  PubMed  Google Scholar 

  28. Bologna L, Gotti E, Da Roit F, Intermesoli T, Rambaldi A, Introna M et al. Ofatumumab is more efficient than rituximab in lysing B chronic lymphocytic leukemia cells in whole blood and in combination with chemotherapy. J Immunol 2013; 190: 231–239.

    CAS  PubMed  Google Scholar 

  29. Wierda WG, Kipps TJ, Mayer J, Stilgenbauer S, Williams CD, Hellmann A et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 1749–1755.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wierda WG, Padmanabhan S, Chan GW, Gupta IV, Lisby S, Osterborg A . Ofatumumab is active in patients with fludarabine-refractory CLL irrespective of prior rituximab: results from the phase 2 international study. Blood 2011; 118: 5126–5129.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wierda WG, Kipps TJ, Durig J, Griskevicius L, Stilgenbauer S, Mayer J et al. Chemoimmunotherapy with O-FC in previously untreated patients with chronic lymphocytic leukemia. Blood 2011; 117: 6450–6458.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Alduaij W, Ivanov A, Honeychurch J, Cheadle EJ, Potluri S, Lim SH et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood 2011; 117: 4519–4529.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Patz M, Isaeva P, Forcob N, Muller B, Frenzel LP, Wendtner CM et al. Comparison of the in vitro effects of the anti-CD20 antibodies rituximab and GA101 on chronic lymphocytic leukaemia cells. Br J Haematol 2011; 152: 295–306.

    CAS  PubMed  Google Scholar 

  34. Morschhauser F, Cartron G, Lamy T, Milpied N-J, Thieblemont C, Tilly H et al. Phase I Study of RO5072759 (GA101) in Relapsed/Refractory Chronic Lymphocytic Leukemia. ASH Annual Meeting Abstracts, November 20, 2009; 114: 884.

  35. Goede V, Fischer K, Humphrey K, Asikanius E, Busch R, Engelke A et al. Obinutuzumab (GA101) plus chlorambucil (Clb) or rituximab (R) plus Clb versus Clb alone in patients with chronic lymphocytic leukemia (CLL) and preexisting medical conditions (comorbidities): Final stage 1 results of the CLL11 (BO21004) phase III trial. ASCO Meeting Abstracts 2013; 31 (15_suppl): 7004.

    Google Scholar 

  36. Hale G, Dyer MJ, Clark MR, Phillips JM, Marcus R, Riechmann L et al. Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody CAMPATH-1H. Lancet 1988; 2: 1394–1399.

    CAS  PubMed  Google Scholar 

  37. Treumann A, Lifely MR, Schneider P, Ferguson MA . Primary structure of CD52. J Biol Chem 1995; 270: 6088–6099.

    CAS  PubMed  Google Scholar 

  38. Stanglmaier M, Reis S, Hallek M . Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann Hematol 2004; 83: 634–645.

    CAS  PubMed  Google Scholar 

  39. Bindon CI, Hale G, Waldmann H . Importance of antigen specificity for complement-mediated lysis by monoclonal antibodies. Eur J Immunol 1988; 18: 1507–1514.

    CAS  PubMed  Google Scholar 

  40. Hillmen P, Skotnicki AB, Robak T, Jaksic B, Dmoszynska A, Wu J et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol 2007; 25: 5616–5623.

    CAS  PubMed  Google Scholar 

  41. Keating MJ, Flinn I, Jain V, Binet JL, Hillmen P, Byrd J et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood 2002; 99: 3554–3561.

    CAS  PubMed  Google Scholar 

  42. Osterborg A, Dyer MJ, Bunjes D, Pangalis GA, Bastion Y, Catovsky D et al. Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European study group of CAMPATH-1H treatment in chronic lymphocytic leukemia. J Clin Oncol 1997; 15: 1567–1574.

    CAS  PubMed  Google Scholar 

  43. Rai KR, Freter CE, Mercier RJ, Cooper MR, Mitchell BS, Stadtmauer EA et al. Alemtuzumab in previously treated chronic lymphocytic leukemia patients who also had received fludarabine. J Clin Oncol 2002; 20: 3891–3897.

    CAS  PubMed  Google Scholar 

  44. Byrd JC, Kipps TJ, Flinn IW, Castro J, Lin TS, Wierda W et al. Phase 1/2 study of lumiliximab combined with fludarabine, cyclophosphamide, and rituximab in patients with relapsed or refractory chronic lymphocytic leukemia. Blood 2010; 115: 489–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Krause G, Patz M, Isaeva P, Wigger M, Baki I, Vondey V et al. Action of novel CD37 antibodies on chronic lymphocytic leukemia cells. Leukemia 2012; 26: 546–549.

    CAS  PubMed  Google Scholar 

  46. Law CL, Gordon KA, Collier J, Klussman K, McEarchern JA, Cerveny CG et al. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res 2005; 65: 8331–8338.

    CAS  PubMed  Google Scholar 

  47. Lapalombella R, Gowda A, Joshi T, Mehter N, Cheney C, Lehman A et al. The humanized CD40 antibody SGN-40 demonstrates pre-clinical activity that is enhanced by lenalidomide in chronic lymphocytic leukaemia. Br J Haematol 2009; 144: 848–855.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Camacho LH, Joyce R, Brown JR, Chanan-Khan A, Amrein PC, Assad A et al. A phase 1, open-label, multi-center, multiple-dose, dose-escalation study of MDX-1342 in patients with CD19-positive refractory/relapsed chronic lymphocytic leukemia. ASH Annual Meeting Abstracts 2009; 114: 3425.

    Google Scholar 

  49. Stein R, Qu Z, Chen S, Solis D, Hansen HJ, Goldenberg DM . Characterization of a humanized IgG4 anti-HLA-DR monoclonal antibody that lacks effector cell functions but retains direct antilymphoma activity and increases the potency of rituximab. Blood 2006; 108: 2736–2744.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol 2007; 178: 5595–5605.

    CAS  PubMed  Google Scholar 

  51. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118: 2427–2437.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ramsay AG, Clear AJ, Fatah R, Gribben JG . Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood 2012; 120: 1412–1421.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dustin ML, Depoil D . New insights into the T cell synapse from single molecule techniques. Nat Rev Immunol 2011; 11: 672–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen CI, Bergsagel PL, Paul H, Xu W, Lau A, Dave N et al. Single-agent lenalidomide in the treatment of previously untreated chronic lymphocytic leukemia. J Clin Oncol 2011; 29: 1175–1181.

    CAS  PubMed  Google Scholar 

  55. Shanafelt TD, Ramsay AG, Zent CS, Leis JF, Tun HW, Call TG et al. Long-term repair of T-cell synapse activity in a phase II trial of chemoimmunotherapy followed by lenalidomide consolidation in previously untreated chronic lymphocytic leukemia (CLL). Blood 2013; 121: 4137–4141.

    CAS  PubMed  Google Scholar 

  56. Lapalombella R, Yu B, Triantafillou G, Liu Q, Butchar JP, Lozanski G et al. Lenalidomide down-regulates the CD20 antigen and antagonizes direct and antibody-dependent cellular cytotoxicity of rituximab on primary chronic lymphocytic leukemia cells. Blood 2008; 112: 5180–5189.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Badoux XC, Keating MJ, Wen S, Wierda WG, O'Brien SM, Faderl S et al. Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 2013; 31: 584–591.

    CAS  PubMed  Google Scholar 

  58. Badoux XC, Keating MJ, Wen S, Lee BN, Sivina M, Reuben J et al. Lenalidomide as initial therapy of elderly patients with chronic lymphocytic leukemia. Blood 2011; 118: 3489–3498.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gribben JG . Stem cell transplantation in chronic lymphocytic leukemia. Biol Blood Marrow Transplant 2009; 15 (1 Suppl): 53–58.

    PubMed  Google Scholar 

  60. Sutton L, Chevret S, Tournilhac O, Divine M, Leblond V, Corront B et al. Autologous stem cell transplantation as a first-line treatment strategy for chronic lymphocytic leukemia: a multicenter, randomized, controlled trial from the SFGM-TC and GFLLC. Blood 2011; 117: 6109–6119.

    CAS  PubMed  Google Scholar 

  61. Kharfan-Dabaja MA, Kumar A, Behera M, Djulbegovic B . Systematic review of high dose chemotherapy and autologous haematopoietic stem cell transplantation for chronic lymphocytic leukaemia: what is the published evidence? Br J Haematol 2007; 139: 234–242.

    CAS  PubMed  Google Scholar 

  62. Michallet M, Archimbaud E, Bandini G, Rowlings PA, Deeg HJ, Gahrton G et al. HLA-identical sibling bone marrow transplantation in younger patients with chronic lymphocytic leukemia. European Group for Blood and Marrow Transplantation and the International Bone Marrow Transplant Registry. Ann Intern Med 1996; 124: 311–315.

    CAS  PubMed  Google Scholar 

  63. Pavletic ZS, Arrowsmith ER, Bierman PJ, Goodman SA, Vose JM, Tarantolo SR et al. Outcome of allogeneic stem cell transplantation for B cell chronic lymphocytic leukemia. Bone Marrow Transplant 2000; 25: 717–722.

    CAS  PubMed  Google Scholar 

  64. Toze CL, Galal A, Barnett MJ, Shepherd JD, Conneally EA, Hogge DE et al. Myeloablative allografting for chronic lymphocytic leukemia: evidence for a potent graft-versus-leukemia effect associated with graft-versus-host disease. Bone Marrow Transplant 2005; 36: 825–830.

    CAS  PubMed  Google Scholar 

  65. Dreger P, Brand R, Milligan D, Corradini P, Finke J, Lambertenghi Deliliers G et al. Reduced-intensity conditioning lowers treatment-related mortality of allogeneic stem cell transplantation for chronic lymphocytic leukemia: a population-matched analysis. Leukemia 2005; 19: 1029–1033.

    CAS  PubMed  Google Scholar 

  66. Kharfan-Dabaja MA, Pidala J, Kumar A, Terasawa T, Djulbegovic B . Comparing efficacy of reduced-toxicity allogeneic hematopoietic cell transplantation with conventional chemo-(immuno) therapy in patients with relapsed or refractory CLL: a Markov decision analysis. Bone Marrow Transplant 2012; 47: 1164–1170.

    CAS  PubMed  Google Scholar 

  67. Burkhardt UE, Hainz U, Stevenson K, Goldstein NR, Pasek M, Naito M et al. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. J Clin Invest 2013; 123: 3756–3765.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. El-Jurdi N, Reljic T, Kumar A, Pidala J, Bazarbachi A, Djulbegovic B et al. Efficacy of adoptive immunotherapy with donor lymphocyte infusion in relapsed lymphoid malignancies. Immunotherapy 2013; 5: 457–466.

    CAS  PubMed  Google Scholar 

  69. Jena B, Dotti G, Cooper LJ . Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood 2010; 116: 1035–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sadelain M, Brentjens R, Riviere I . The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3: 388–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pule MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK . A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther 2005; 12: 933–941.

    CAS  PubMed  Google Scholar 

  72. Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 2012; 119: 3940–3950.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh H, Figliola MJ, Dawson MJ, Olivares S, Zhang L, Yang G et al. Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells. PLoS ONE 2013; 8: e64138.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Huls MH, Figliola MJ, Dawson MJ, Olivares S, Kebriaei P, Shpall EJ et al. Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J Vis Exp 2013; 72: e50070.

    Google Scholar 

  75. Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood 2008; 112: 2261–2271.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra138.

    Google Scholar 

  77. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 2013; e-pub ahead of print 20 September 2013 doi:10.1182/blood-2013-08-519413.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118: 4817–4828.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368: 1509–1518.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M . Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther 2010; 18: 666–668.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119: 2709–2720.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. John LB, Devaud C, Duong CM, Yong C, Beavis PA, Haynes NM et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 2013; 19: 3153–3164.

    Google Scholar 

  84. Hudecek M, Lupo-Stanghellini MT, Kosasih PL, Sommermeyer D, Jensen MC, Rader C et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clin Cancer Res 2013; 19: 3153–3164.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA 2008; 105: 3047–3052.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Gluckman E . Hematopoietic stem-cell transplants using umbilical-cord blood. N Engl J Med 2001; 344: 1860–1861.

    CAS  PubMed  Google Scholar 

  87. Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, Rabin KR et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia 2013; 27: 1538–1547.

    CAS  PubMed  Google Scholar 

  88. Castro JE, Melo-Cardenas J, Urquiza M, Barajas-Gamboa JS, Pakbaz RS, Kipps TJ . Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Cancer Res 2012; 72: 2937–2948.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Genevier HC, Hinshelwood S, Gaspar HB, Rigley KP, Brown D, Saeland S et al. Expression of Bruton's tyrosine kinase protein within the B cell lineage. Eur J Immunol 1994; 24: 3100–3105.

    CAS  PubMed  Google Scholar 

  90. Wiestner A . Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood 2012; 120: 4684–4691.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2013; 369: 507–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119: 1182–1189.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Burger JA, Keating MJ, Wierda WG, Hoellenriegel J, Ferrajoli A, Faderl S et al. The Btk Inhibitor ibrutinib (PCI-32765) in combination with rituximab is well tolerated and displays profound activity in high-risk chronic lymphocytic leukemia (CLL) patients. ASH Annual Meeting Abstracts 2012; 120: 187.

    Google Scholar 

  95. Jaglowski SM, Jones JA, Flynn JM, Andritsos LA, Maddocks KJ, Blum KA et al. A phase Ib/II study evaluating activity and tolerability of BTK inhibitor PCI-32765 and ofatumumab in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and related diseases. ASCO Meeting Abstracts 2012; 30 (15_suppl): 6508.

    Google Scholar 

  96. Brown JBJ, Flinn I, Barr P, Burger J, Navarro T . The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib combined with bendamustine and rituximab is active and tolerable in patients with relapsed/refractory CLL, interim results of a phase IB/II study. Haematologica 2012 17th Congress of the European Hematology Association Abstract 0543 2012.

  97. Chang BY, Furman RR, Zapatka M, Barrientos JC, Li D, Steggerda S et al. Use of tumor genomic profiling to reveal mechanisms of resistance to the BTK inhibitor ibrutinib in chronic lymphocytic leukemia (CLL). ASCO Meeting Abstracts 2013; 31 (15_suppl): 7014.

    Google Scholar 

  98. Caballero D, Garcia-Marco JA, Martino R, Mateos V, Ribera JM, Sarra J et al. Allogeneic transplant with reduced intensity conditioning regimens may overcome the poor prognosis of B-cell chronic lymphocytic leukemia with unmutated immunoglobulin variable heavy-chain gene and chromosomal abnormalities (11q- and 17p-). Clin Cancer Res 2005; 11: 7757–7763.

    CAS  PubMed  Google Scholar 

  99. Schetelig J, van Biezen A, Brand R, Caballero D, Martino R, Itala M et al. Allogeneic hematopoietic stem-cell transplantation for chronic lymphocytic leukemia with 17p deletion: a retrospective European Group for blood and marrow transplantation analysis. J Clin Oncol 2008; 26: 5094–5100.

    PubMed  Google Scholar 

  100. Brown JR, Sharman JP, Harb WA, Kelly KR, Schreeder MT, Sweetenham JW et al. Phase Ib trial of AVL-292, a covalent inhibitor of Bruton’s tyrosine kinase (Btk), in chronic lymphocytic leukemia (CLL) and B-non-Hodgkin lymphoma (B-NHL). ASCO Meeting Abstracts 2012; 30 (15_suppl): 8032.

    Google Scholar 

  101. Brown JR, Harb WA, Gabrilove JL, Sharman JP, Hill BT, Ma S et al. Phase 1 study of single agent CC-292, a highly selective Bruton’s tyrosine kinase (Btk) inhibitor, in relapsed/refractory chronic lymphocytic leukemia (CLL). XViwCLL, Cologne, Germany, 2013.

  102. Davids MS, Brown JR . Phosphoinositide 3′-kinase inhibition in chronic lymphocytic leukemia. Hematol Oncol Clin North Am 2013; 27: 329–339.

    PubMed  PubMed Central  Google Scholar 

  103. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Barrientos JC, Furman RR, Leonard J, Flinn I, Rai KR, De Vos S et al. Update on a phase I study of the selective PI3K{delta} inhibitor idelalisib (GS-1101) in combination with rituximab and/or bendamustine in patients with relapsed or refractory CLL. ASCO Meeting Abstracts 2013; 31 (15_suppl): 7017.

    Google Scholar 

  105. O'Brien SM, Lamanna N, Kipps TJ, Flinn I, Zelenetz AD, Burger JA et al. A phase II study of the selective phosphatidylinositol 3-kinase delta (PI3K{delta}) inhibitor idelalisib (GS-1101) in combination with rituximab (R) in treatment-naive patients (pts) >=65 years with chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL). ASCO Meeting Abstracts 2013; 31 (15_suppl): 7005.

    Google Scholar 

  106. Gauld SB, Dal Porto JM, Cambier JC . B cell antigen receptor signaling: roles in cell development and disease. Science 2002; 296: 1641–1642.

    CAS  PubMed  Google Scholar 

  107. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115: 2578–2585.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Johnson AJ, Yeh YY, Smith LL, Wagner AJ, Hessler J, Gupta S et al. The novel cyclin-dependent kinase inhibitor dinaciclib (SCH727965) promotes apoptosis and abrogates microenvironmental cytokine protection in chronic lymphocytic leukemia cells. Leukemia 2012; 26: 2554–2557.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Flynn JM, Jones JA, Andritsos L, Blum KA, Johnson AJ, Hessler J et al. Update on the phase I study of the cyclin dependent kinase inhibitor dinaciclib (SCH 727965) in patients with relapsed or refractory chronic lymphocytic leukemia (CLL): confirmation of clinical activity and feasibility of long-term administration. ASH Annual Meeting Abstracts 2010; 116: 1396.

    Google Scholar 

  110. Kadia T, Delioukina ML, Kantarjian HM, Keating MJ, Wierda WG, Burger JA et al. A pilot phase II study of the lyn kinase inhibitor bafetinib in patients with relapsed or refractory B cell chronic lymphocytic leukemia. ASH Annual Meeting Abstracts 2011; 118: 2858.

    Google Scholar 

  111. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    CAS  PubMed  Google Scholar 

  112. Kharfan-Dabaja MA, Chavez JC, Khorfan KA, Pinilla-Ibarz J . Clinical and therapeutic implications of the mutational status of IgVH in patients with chronic lymphocytic leukemia. Cancer 2008; 113: 897–906.

    PubMed  Google Scholar 

  113. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995; 85: 1580–1589.

    CAS  PubMed  Google Scholar 

  115. el Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 1993; 82: 3452–3459.

    CAS  PubMed  Google Scholar 

  116. Sturm I, Bosanquet AG, Hermann S, Guner D, Dorken B, Daniel PT . Mutation of p53 and consecutive selective drug resistance in B-CLL occurs as a consequence of prior DNA-damaging chemotherapy. Cell Death Differ 2003; 10: 477–484.

    CAS  PubMed  Google Scholar 

  117. Dreger P, Corradini P, Kimby E, Michallet M, Milligan D, Schetelig J et al. Indications for allogeneic stem cell transplantation in chronic lymphocytic leukemia: the EBMT transplant consensus. Leukemia 2007; 21: 12–17.

    CAS  PubMed  Google Scholar 

  118. Hosing C, Kebriaei P, Wierda W, Jena B, Cooper LJ, Shpall E . CARs in chronic lymphocytic leukemia — ready to drive. Curr Hematol Malig Rep 2013; 8: 60–70.

    PubMed  Google Scholar 

  119. Sentman CL . Challenges of creating effective chimeric antigen receptors for cancer therapy. Immunotherapy 2013; 5: 783–785.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Kharfan-Dabaja.

Ethics declarations

Competing interests

Dr LJN Cooper founded and owns InCellerate Inc. He has patents with Sangamo Biosciences regarding artificial nucleases. He consults with American Stem Cells, Inc. and GE Healthcare. The remaining authors declare no relevant conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharfan-Dabaja, M., Wierda, W. & Cooper, L. Immunotherapy for chronic lymphocytic leukemia in the era of BTK inhibitors. Leukemia 28, 507–517 (2014). https://doi.org/10.1038/leu.2013.311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.311

Keywords

This article is cited by

Search

Quick links