Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Increasing genomic and epigenomic complexity in the clonal evolution from in situ to manifest t(14;18)-positive follicular lymphoma

Abstract

Follicular lymphoma (FL) is characterized besides the t(14;18)(q32;q21), by recurrent chromosomal alterations and somatic mutations. In this study, we analyzed cases of FL in situ (FLIS) without manifest FL (mFL), partial involvement by FL (PFL) and paired cases of FLIS and mFL to detect possible early chromosomal imbalances, mutations, as well as DNA-methylation patterns of genomic regions of selected genes. We demonstrate that all paired FLIS and mFL cases were clonally related, based on IGH rearrangement patterns and BCL2 breakpoint sequences. FLIS and PFL had no or few secondary chromosomal imbalances detectable by array comparative genomic hybridization (FLIS 0.8 copy number alterations (CNA)/case; PFL 2.0 CNA/case; mFL 6.3 CNA/case) and a lower level of DNA methylation of genes recurrently de novo methylated in lymphomas, as compared with mFL. EZH2 Tyr641 mutations were detected in a subset of both FLIS (2/9) and PFL (1/3) cases. In conclusion, these findings provide evidence that FLIS represents a FL precursor lesion of long-lived clonal B cells carrying the t(14;18) with no or few secondary genetic changes. Our data suggest that there may be more than one distinct lesion driving the progression from FLIS to manifest lymphoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Swerdlow S, Campo E, Harris NL, Jaffe ES, Pileri SA . World Health Organization Classification of Tumours. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2008.

    Google Scholar 

  2. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ . Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–336.

    Article  CAS  PubMed  Google Scholar 

  3. Horsman DE, Gascoyne RD, Coupland RW, Coldman AJ, Adomat SA . Comparison of cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14; 18) in follicular lymphoma. Am J Clin Pathol 1995; 103: 472–478.

    Article  CAS  PubMed  Google Scholar 

  4. Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM . The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 1985; 229: 1390–1393.

    Article  CAS  PubMed  Google Scholar 

  5. Cheung KJ, Shah SP, Steidl C, Johnson N, Relander T, Telenius A et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood 2009; 113: 137–148.

    Article  CAS  PubMed  Google Scholar 

  6. Leich E, Salaverria I, Bea S, Zettl A, Wright G, Moreno V et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood 2009; 114: 826–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dolken G, Illerhaus G, Hirt C, Mertelsmann R . BCL-2/JH rearrangements in circulating B cells of healthy blood donors and patients with nonmalignant diseases. J Clin Oncol 1996; 14: 1333–1344.

    Article  CAS  PubMed  Google Scholar 

  8. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood 1995; 85: 2528–2536.

    CAS  PubMed  Google Scholar 

  9. Liu Y, Hernandez AM, Shibata D, Cortopassi GA . BCL2 translocation frequency rises with age in humans. Proc Natl Acad Sci USA 1994; 91: 8910–8914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bell DA, Liu Y, Cortopassi GA . Occurrence of bcl-2 oncogene translocation with increased frequency in the peripheral blood of heavy smokers. J Natl Cancer Inst 1995; 87: 223–224.

    Article  CAS  PubMed  Google Scholar 

  11. Roulland S, Lebailly P, Lecluse Y, Briand M, Pottier D, Gauduchon P . Characterization of the t(14;18) BCL2-IGH translocation in farmers occupationally exposed to pesticides. Cancer Res 2004; 64: 2264–2269.

    Article  CAS  PubMed  Google Scholar 

  12. Roulland S, Lebailly P, Lecluse Y, Heutte N, Nadel B, Gauduchon P . Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals. Leukemia 2006; 20: 158–162.

    Article  CAS  PubMed  Google Scholar 

  13. Cong P, Raffeld M, Teruya-Feldstein J, Sorbara L, Pittaluga S, Jaffe ES . In situ localization of follicular lymphoma: description and analysis by laser capture microdissection. Blood 2002; 99: 3376–3382.

    Article  CAS  PubMed  Google Scholar 

  14. Jegalian AG, Eberle FC, Pack SD, Mirvis M, Raffeld M, Pittaluga S et al. Follicular lymphoma in situ: clinical implications and comparisons with partial involvement by follicular lymphoma. Blood 2011; 118: 2976–2984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheung MC, Bailey D, Pennell N, Imrie KR, Berinstein NL, Amato D et al. In situ localization of follicular lymphoma: evidence for subclinical systemic disease with detection of an identical BCL-2/IGH fusion gene in blood and lymph node. Leukemia 2009; 23: 1176–1179.

    Article  CAS  PubMed  Google Scholar 

  16. Bonzheim I, Salaverria I, Haake A, Gastl G, Adam P, Siebert R et al. A unique case of follicular lymphoma provides insights to the clonal evolution from follicular lymphoma in situ to manifest follicular lymphoma. Blood 2011; 118: 3442–3444.

    Article  CAS  PubMed  Google Scholar 

  17. De S, Shaknovich R, Riester M, Elemento O, Geng H, Kormaksson M et al. Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet 2013; 9: e1003137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin-Subero JI, Ammerpohl O, Bibikova M, Wickham-Garcia E, Agirre X, Alvarez S et al. A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms. PLoS One 2009; 4: e6986.

    Article  PubMed  PubMed Central  Google Scholar 

  19. O'Riain C, O’Shea DM, Yang Y, Le Dieu R, Gribben JG, Summers K et al. Array-based DNA methylation profiling in follicular lymphoma. Leukemia 2009; 23: 1858–1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 2011; 471: 189–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Montes-Moreno S, Castro Y, Rodriguez-Pinilla SM, Garcia JF, Mollejo M, Castillo ME et al. Intrafollicular neoplasia/in situ follicular lymphoma: review of a series of 13 cases. Histopathology 2010; 56: 658–662.

    Article  PubMed  Google Scholar 

  23. Henopp T, Quintanilla-Martinez L, Fend F, Adam P . Prevalence of follicular lymphoma in situ in consecutively analysed reactive lymph nodes. Histopathology 2011; 59: 139–142.

    Article  PubMed  Google Scholar 

  24. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood 2002; 99: 1474–1477.

    Article  CAS  PubMed  Google Scholar 

  25. Steinemann D, Gesk S, Zhang Y, Harder L, Pilarsky C, Hinzmann B et al. Identification of candidate tumor-suppressor genes in 6q27 by combined deletion mapping and electronic expression profiling in lymphoid neoplasms. Genes Chromosomes Cancer 2003; 37: 421–426.

    Article  CAS  PubMed  Google Scholar 

  26. Ventura RA, Martin-Subero JI, Jones M, McParland J, Gesk S, Mason DY et al. FISH analysis for the detection of lymphoma-associated chromosomal abnormalities in routine paraffin-embedded tissue. J Mol Diagn 2006; 8: 141–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sotlar K, Escribano L, Landt O, Mohrle S, Herrero S, Torrelo A et al. One-step detection of c-kit point mutations using peptide nucleic acid-mediated polymerase chain reaction clamping and hybridization probes. Am J Pathol 2003; 162: 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  PubMed  Google Scholar 

  29. Stetler-Stevenson M, Raffeld M, Cohen P, Cossman J . Detection of occult follicular lymphoma by specific DNA amplification. Blood 1988; 72: 1822–1825.

    CAS  Google Scholar 

  30. Gribben JG, Freedman A, Woo SD, Blake K, Shu RS, Freeman G et al. All advanced stage non-Hodgkin's lymphomas with a polymerase chain reaction amplifiable breakpoint of bcl-2 have residual cells containing the bcl-2 rearrangement at evaluation and after treatment. Blood 1991; 78: 3275–3280.

    CAS  PubMed  Google Scholar 

  31. Albinger-Hegyi A, Hochreutener B, Abdou MT, Hegyi I, Dours-Zimmermann MT, Kurrer MO et al. High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol 2002; 160: 823–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trainor KJ, Brisco MJ, Wan JH, Neoh S, Grist S, Morley AA . Gene rearrangement in B- and T-lymphoproliferative disease detected by the polymerase chain reaction. Blood 1991; 78: 192–196.

    CAS  PubMed  Google Scholar 

  33. Liu F, Yoshida N, Suguro M, Kato H, Karube K, Arita K et al. Clonal heterogeneity of mantle cell lymphoma revealed by array comparative genomic hybridization. Eur J Haematol 2013; 90: 51–58.

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Subero JI, Kreuz M, Bibikova M, Bentink S, Ammerpohl O, Wickham-Garcia E et al. New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood 2009; 113: 2488–2497.

    Article  CAS  PubMed  Google Scholar 

  35. Pellissery S, Richter J, Haake A, Montesinos-Rongen M, Deckert M, Siebert R . Somatic mutations altering Tyr641 of EZH2 are rare in primary central nervous system lymphoma. Leuk Lymphoma 2010; 51: 2135–2136.

    Article  PubMed  Google Scholar 

  36. Roulland S, Faroudi M, Mamessier E, Sungalee S, Salles G, Nadel B . Early steps of follicular lymphoma pathogenesis. Adv Immunol 2011; 111: 1–46.

    Article  CAS  PubMed  Google Scholar 

  37. Horsman DE, Connors JM, Pantzar T, Gascoyne RD . Analysis of secondary chromosomal alterations in 165 cases of follicular lymphoma with t(14;18). Genes Chromosomes Cancer 2001; 30: 375–382.

    Article  CAS  PubMed  Google Scholar 

  38. Adam P, Katzenberger T, Eifert M, Ott MM, Rosenwald A, Muller-Hermelink HK et al. Presence of preserved reactive germinal centers in follicular lymphoma is a strong histopathologic indicator of limited disease stage. Am J Surg Pathol 2005; 29: 1661–1664.

    Article  PubMed  Google Scholar 

  39. d'Amore F, Chan E, Iqbal J, Geng H, Young K, Xiao L et al. Clonal evolution in t(14;18)-positive follicular lymphoma, evidence for multiple common pathways, and frequent parallel clonal evolution. Clin Cancer Res 2008; 14: 7180–7187.

    Article  CAS  PubMed  Google Scholar 

  40. Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood 2013; 121: 1604–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bödör C, Grossmann V, Popov N, Okosun J, O’Riain C, Tan K et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood 2013; 122: 3165–3168.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M et al. EZH2 is required for germinal center formation and somatic ezh2 mutations promote lymphoid transformation. Cancer Cell 2013; 23: 677–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ryan RJ, Nitta M, Borger D, Zukerberg LR, Ferry JA, Harris NL et al. EZH2 codon 641 mutations are common in BCL2-rearranged germinal center B cell lymphomas. PLoS One 2011; 6: e28585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 2010; 42: 181–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dorit Schuster, Reina Zühlke-Jenisch, Magret Ratjen, Claudia Kloss, Anne Marie Adam and Sema Colak for their excellent technical assistance. IS was supported by a fellowship from the Alexander von Humboldt Foundation. This project is supported by the BMBF HämatoSys network project (FKZ0315452B; RS) and SFB 685 (LQ-M and FF).

Author contributions

LQ-M and RS designed the study, supervised the experimental work, analyzed data and wrote the manuscript. FF designed the study, analyzed data and helped writing the manuscript. JS, IS, AH performed the experimental work and helped writing the manuscript. IB performed and supervised the experimental work. MAP, SM-M and PA provided samples and clinical information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Quintanilla-Martinez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J., Salaverria, I., Haake, A. et al. Increasing genomic and epigenomic complexity in the clonal evolution from in situ to manifest t(14;18)-positive follicular lymphoma. Leukemia 28, 1103–1112 (2014). https://doi.org/10.1038/leu.2013.307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.307

Keywords

This article is cited by

Search

Quick links