Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1

Abstract

Multiple myeloma (MM) is a deadly hematopoietic malignancy characterized by proliferation of malignant plasma cells in the bone marrow (BM) and bone disease. Interactions between myeloma and BM cells facilitate tumor progression and resistance to therapies. CXCR4 and its ligand Stromal cell-derived factor-1 (SDF-1) have a primary role in this process and are associated with poor prognosis. The Notch pathway is active in myeloma cells, resulting in increased proliferation, resistance to apoptosis and osteolytic activity. We hypothesized that the CXCR4/SDF-1 axis mediates the effects of Notch signals in myeloma cells. Here we show that Notch positively controls CXCR4/SDF-1 expression and functions in myeloma cell lines, and that forced CXCR4 activation partially rescues tumor cells from the outcomes of Notch inhibition. Additionally, we provide evidences that Notch blocking in vivo significantly reduces BM infiltration by human myeloma cells in mouse xenografts. This is the first evidence that a Notch-targeted approach effectively prevents MM cell migration, proliferation and resistance to apoptosis by reducing CXCR4 and SDF-1 levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS . Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 2000; 19: 4319–4327.

    Article  CAS  PubMed  Google Scholar 

  2. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    CAS  PubMed  Google Scholar 

  3. Taube T, Beneton MN, McCloskey EV, Rogers S, Greaves M, Kanis JA . Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol 1992; 49: 192–198.

    Article  CAS  PubMed  Google Scholar 

  4. Roodman GD . Pathogenesis of myeloma bone disease. J Cell Biochem 2010; 109: 283–291.

    CAS  PubMed  Google Scholar 

  5. Raje N, Roodman GD . Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 2011; 17: 1278–1286.

    Article  CAS  PubMed  Google Scholar 

  6. Yaccoby S . Advances in the understanding of myeloma bone disease and tumour growth. Br J Haematol 2010; 149: 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mirandola L, Comi P, Cobos E, Martin Kast W, Chiriva-Internati M, Chiaramonte R . Notch-ing from T-cell to B-cell lymphoid malignancies. Cancer Lett 2011; 308: 1–13.

    Article  CAS  PubMed  Google Scholar 

  8. Vande Broek I, Leleu X, Schots R, Facon T, Vanderkerken K, Van Camp B et al. Clinical significance of chemokine receptor (CCR1, CCR2 and CXCR4) expression in human myeloma cells: the association with disease activity and survival. Haematologica 2006; 91: 200–206.

    CAS  PubMed  Google Scholar 

  9. Zannettino AC, Farrugia AN, Kortesidis A, Manavis J, To LB, Martin SK et al. Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 2005; 65: 1700–1709.

    Article  CAS  PubMed  Google Scholar 

  10. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000; 106: 1331–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim SY, Lee CH, Midura BV, Yeung C, Mendoza A, Hong SH et al. Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 2008; 25: 201–211.

    Article  CAS  PubMed  Google Scholar 

  12. Aggarwal R, Ghobrial IM, Roodman GD . Chemokines in multiple myeloma. Exp Hematol 2006; 34: 1289–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Gupta D et al. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther 2002; 1: 539–544.

    Article  CAS  PubMed  Google Scholar 

  14. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007; 109: 2708–2717.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Parmo-Cabanas M, Bartolome RA, Wright N, Hidalgo A, Drager AM, Teixido J . Integrin alpha4beta1 involvement in stromal cell-derived factor-1alpha-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res 2004; 294: 571–580.

    Article  CAS  PubMed  Google Scholar 

  16. Mirandola L, Comi P, Cobos E, Kast WM, Chiriva-Internati M, Chiaramonte R . Notch-ing from T-cell to B-cell lymphoid malignancies. Cancer Lett 2011; 308: 1–13.

    Article  CAS  PubMed  Google Scholar 

  17. Osborne B, Miele L . Notch and the immune system. Immunity 1999; 11: 653–663.

    Article  CAS  PubMed  Google Scholar 

  18. Skrtic A, Korac P, Kristo DR, Ajdukovic Stojisavljevic R, Ivankovic D, Dominis M . Immunohistochemical analysis of NOTCH1 and JAGGED1 expression in multiple myeloma and monoclonal gammopathy of undetermined significance. Hum Pathol 2010; 41: 1702–1710.

    Article  CAS  PubMed  Google Scholar 

  19. Ghoshal P, Nganga AJ, Moran-Giuati J, Szafranek A, Johnson TR, Bigelow AJ et al. Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma. Cancer Res 2009; 69: 4380–4387.

    Article  CAS  PubMed  Google Scholar 

  20. Jundt F, Probsting KS, Anagnostopoulos I, Muehlinghaus G, Chatterjee M, Mathas S et al. Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood 2004; 103: 3511–3515.

    Article  CAS  PubMed  Google Scholar 

  21. Hedvat CV, Comenzo RL, Teruya-Feldstein J, Olshen AB, Ely SA, Osman K et al. Insights into extramedullary tumour cell growth revealed by expression profiling of human plasmacytomas and multiple myeloma. Br J Haematol 2003; 122: 728–744.

    Article  CAS  PubMed  Google Scholar 

  22. Houde C, Li Y, Song L, Barton K, Zhang Q, Godwin J et al. Overexpression of the NOTCH ligand JAG2 in malignant plasma cells from multiple myeloma patients and cell lines. Blood 2004; 104: 3697–3704.

    Article  CAS  PubMed  Google Scholar 

  23. Takeuchi T, Adachi Y, Ohtsuki Y . Skeletrophin, a novel ubiquitin ligase to the intracellular region of Jagged-2, is aberrantly expressed in multiple myeloma. Am J Pathol 2005; 166: 1817–1826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI . Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004; 103: 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  25. Mirandola L, Chiriva-Internati M, Montagna D, Locatelli F, Zecca M, Ranzani M et al. Notch1 regulates chemotaxis and proliferation by controlling the chemokine receptors 5 and 9 in T-cell acute lymphoblastic leukemia. J Pathol 2011; 7: 713–722.

    Google Scholar 

  26. Schwarzer R, Kaiser M, Acikgoez O, Heider U, Mathas S, Preissner R et al. Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia 2008; 22: 2273–2277.

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Wang YC, Hu XB, Zhang BF, Dou GR, He F et al. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice. PLoS One 2009; 4: e7572.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Williams CK, Segarra M, Sierra Mde L, Sainson RC, Tosato G, Harris AL . Regulation of CXCR4 by the Notch ligand delta-like 4 in endothelial cells. Cancer Res 2008; 68: 1889–1895.

    Article  CAS  PubMed  Google Scholar 

  29. Hoshino N, Katayama N, Shibasaki T, Ohishi K, Nishioka J, Masuya M et al. A novel role for Notch ligand Delta-1 as a regulator of human Langerhans cell development from blood monocytes. J Leukoc Biol 2005; 78: 921–929.

    Article  CAS  PubMed  Google Scholar 

  30. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 2009; 459: 1000–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guiducci S, Manetti M, Romano E, Mazzanti B, Ceccarelli C, Dal Pozzo S et al. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro. Ann Rheum Dis 2011; 70: 2011–2021.

    Article  CAS  PubMed  Google Scholar 

  32. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113: 4341–4351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kopan R, Schroeter EH, Weintraub H, Nye JS . Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci USA 1996; 93: 1683–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kopan R, Nye JS, Weintraub H . The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 1994; 120: 2385–2396.

    CAS  PubMed  Google Scholar 

  35. Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI . Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 2008; 111: 2220–2229.

    Article  CAS  PubMed  Google Scholar 

  36. Mirandola L, Yu Y, Chui K, Jenkins MR, Cobos E, John CM et al. Galectin-3C inhibits tumor growth and increases the anticancer activity of bortezomib in a murine model of human multiple myeloma. PLoS One 2011; 6: e21811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee HJ, Jung KM, Huang YZ, Bennett LB, Lee JS, Mei L et al. Presenilin-dependent gamma-secretase-like intramembrane cleavage of ErbB4. J Biol Chem 2002; 277: 6318–6323.

    Article  CAS  PubMed  Google Scholar 

  38. Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V et al. A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. Embo J 2002; 21: 1948–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilhelmsen K, van der Geer P . Phorbol 12-myristate 13-acetate-induced release of the colony-stimulating factor 1 receptor cytoplasmic domain into the cytosol involves two separate cleavage events. Mol Cell Biol 2004; 24: 454–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuhn PH, Marjaux E, Imhof A, De Strooper B, Haass C, Lichtenthaler SF . Regulated intramembrane proteolysis of the interleukin-1 receptor II by alpha-, beta-, and gamma-secretase. J Biol Chem 2007; 282: 11982–11995.

    Article  CAS  PubMed  Google Scholar 

  41. Moellering RE, Cornejo M, Davis TN, Del Bianco C, Aster JC, Blacklow SC et al. Direct inhibition of the NOTCH transcription factor complex. Nature 2009; 462: 182–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Palumbo A, Rajkumar SV . Multiple myeloma: chemotherapy or transplantation in the era of new drugs. Eur J Haematol 2010; 84: 379–390.

    Article  PubMed  Google Scholar 

  43. Kaufman J, Gleason C, Lonial S . Treatment of relapsed and refractory myeloma. Curr Hematol Malig Rep 2009; 4: 99–107.

    Article  PubMed  Google Scholar 

  44. Mahindra A, Cirstea D, Raje N . Novel therapeutic targets for multiple myeloma. Future Oncol 2010; 6: 407–418.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou Y, Barlogie B, Shaughnessy JD . The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia 2009; 23: 1941–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li M, Chen F, Clifton N, Sullivan DM, Dalton WS, Gabrilovich DI et al. Combined inhibition of Notch signaling and Bcl-2/Bcl-xL results in synergistic antimyeloma effect. Mol Cancer Ther 2010; 9: 3200–3209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clementz AG, Rogowski A, Pandya K, Miele L, Osipo C . NOTCH-1 and NOTCH-4 are novel gene targets of PEA3 in breast cancer: novel therapeutic implications. Breast Cancer Res 2011; 13: R63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  49. Han J, Ma I, Hendzel MJ, Allalunis-Turner J . The cytotoxicity of gamma-secretase inhibitor I to breast cancer cells is mediated by proteasome inhibition, not by gamma-secretase inhibition. Breast Cancer Res 2009; 11: 6.

    Article  CAS  Google Scholar 

  50. Chen F, Pisklakova A, Li M, Baz R, Sullivan DM, Nefedova Y . Gamma-secretase inhibitor enhances the cytotoxic effect of bortezomib in multiple myeloma. Cell Oncol 2011; 34: 545–551.

    Article  CAS  Google Scholar 

  51. Zweidler-McKay PA, He Y, Xu L, Rodriguez CG, Karnell FG, Carpenter AC et al. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 2005; 106: 3898–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Colombo M, Mirandola L, Platonova N, Apicella L, Basile A, Figueroa AJ et al. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia 2013; 11: 6.

    Google Scholar 

  53. Maerki S, Ceredig R, Rolink A . Induction of chemokine receptor expression during early stages of T cell development. Immunol Lett 2006; 104: 110–117.

    Article  CAS  PubMed  Google Scholar 

  54. Hideshima T, Chauhan D, Hayashi T, Podar K, Akiyama M, Gupta D et al. The biological sequelae of stromal cell-derived factor-1alpha in multiple myeloma. Mol Cancer Ther 2002; 1: 539–544.

    Article  CAS  PubMed  Google Scholar 

  55. Ramakrishnan V, Ansell S, Haug J, Grote D, Kimlinger T, Stenson M et al. MRK003, a gamma-secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin's lymphoma. Leukemia 2011; 9: 192.

    Google Scholar 

  56. Beider K, Begin M, Abraham M, Wald H, Weiss ID, Wald O et al. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp Hematol 2011; 39: 282–292.

    Article  CAS  PubMed  Google Scholar 

  57. Diamond P, Labrinidis A, Martin SK, Farrugia AN, Gronthos S, To LB et al. Targeted disruption of the CXCL12/CXCR4 axis inhibits osteolysis in a murine model of myeloma-associated bone loss. J Bone Miner Res 2009; 24: 1150–1161.

    Article  CAS  PubMed  Google Scholar 

  58. Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E et al. The involvement of stromal derived factor 1alpha in homing and progression of multiple myeloma in the 5TMM model. Haematologica 2006; 91: 605–612.

    CAS  PubMed  Google Scholar 

  59. Mirandola L, Yu Y, Jenkins MR, Chiaramonte R, Cobos E, John CM et al. Tracking human multiple myeloma xenografts in NOD-Rag-1/IL-2 receptor gamma chain-null mice with the novel biomarker AKAP-4. BMC Cancer 2011; 11: 394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof Carmelo Carlo-Stella (Università degli Studi, Department of Medical Biotechnology and Translational Medicine) for providing MM cell lines, Prof M Cattaneo, A Gorio, E Faioni and Dr E Lesma (Università degli Studi di Milano, Department of Health Sciences) for equipment support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Chiaramonte.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirandola, L., Apicella, L., Colombo, M. et al. Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia 27, 1558–1566 (2013). https://doi.org/10.1038/leu.2013.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.27

Keywords

This article is cited by

Search

Quick links