Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms

Abstract

We hypothesized that specific molecular mutations are important biomarkers for response to DNA methyltransferase inhibitors (DNMT inhibitors) and may have prognostic value in patients with myelodysplastic syndromes (MDS). Mutational analysis was performed in 92 patients with MDS and related disorders who received 5-azacytidine (n=55), decitabine (n=26) or both (n=11). Mutational status was correlated with overall response rate (ORR), progression-free survival (PFS) and overall survival (OS) by univariate and multivariate analysis. Risk stratification models were created. TET2, DNMT3A, IDH1/IDH2, ASXL1, CBL, RAS and SF3B1 mutations were found in 18, 9, 8, 26, 3, 2 and 13% of patients, respectively. In multivariate analysis, TET2MUT and/or DNMT3AMUT (P=0.03), platelets100 × 109/l (P=0.007) and WBC<3.0 × 109/l (P=0.03) were independent predictors of better response. TET2MUT and/or DNMT3AMUT (P=0.04) status was also independently prognostic for improved PFS, as were good or intermediate cytogenetic risk (P<0.0001), age<60 (P=0.0001), treatment with both 5-azacytidine and decitabine (P=0.02) and hemoglobin10 g/dl (P=0.01). Better OS was associated with ASXL1WT (P=0.008) and SF3B1MUT (P=0.01), and, similar to PFS, cytogenetic risk (P=0.0002), age (P=0.02) and hemoglobin (P=0.04). These data support the role of molecular mutations as predictive biomarkers for response and survival in MDS patients treated with DNMT inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Sekeres MA . Epidemiology, natural history, and practice patterns of patients with myelodysplastic syndromes in 2010. J Natl Compr Canc Netw 2011; 9: 57–63.

    Article  PubMed  Google Scholar 

  2. Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 2009; 114: 3448–3458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 2002; 20: 2429–2440.

    Article  CAS  PubMed  Google Scholar 

  4. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio J et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006; 106: 1794–1803.

    Article  CAS  PubMed  Google Scholar 

  5. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009; 10: 223–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Itzykson R, Thepot S, Quesnel B, Dreyfus F, Beyne-Rauzy O, Turlure P et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood 2011; 117: 403–411.

    Article  CAS  PubMed  Google Scholar 

  7. Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 2011; 25: 1147–1152.

    Article  CAS  PubMed  Google Scholar 

  8. Braun T, Itzykson R, Renneville A, de Renzis B, Dreyfus F, Laribi K et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood 2011; 118: 3824–3831.

    Article  CAS  PubMed  Google Scholar 

  9. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  10. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011; 25: 1153–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kosmider O, Gelsi-Boyer V, Slama L, Dreyfus F, Beyne-Rauzy O, Quesnel B et al. Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 2010; 24: 1094–1096.

    Article  CAS  PubMed  Google Scholar 

  12. Gelsi-Boyer V, Trouplin V, Adelaide J, Bonansea J, Cervera N, Carbuccia N et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 2009; 145: 788–800.

    Article  CAS  PubMed  Google Scholar 

  13. Makishima H, Cazzolli H, Szpurka H, Dunbar A, Tiu R, Huh J et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol 2009; 27: 6109–6116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011; 364: 2496–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009; 41: 838–842.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    Article  CAS  PubMed  Google Scholar 

  17. Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009; 113: 6403–6410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brunning RD, Orazi A, Germing U, Le Beau MM . Myelodysplastic syndromes. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn IARC Press: France, 2008; pp 88–107.

    Google Scholar 

  19. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  20. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The Medical Research Council Adult and Children's Leukaemia Working Parties. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  21. Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood 2006; 108: 419–425.

    Article  CAS  PubMed  Google Scholar 

  22. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 2003; 21: 4642–4649.

    Article  PubMed  Google Scholar 

  23. Sekeres MA, Tiu RV, Komrokji R, Lancet J, Advani AS, Afable M et al. Phase 2 study of the lenalidomide and azacitidine combination in patients with higher-risk myelodysplastic syndromes. Blood 2012; 120: 4945–4951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 2010; 468: 839–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43: 309–315.

    Article  CAS  PubMed  Google Scholar 

  28. Thol F, Damm F, Ludeking A, Winschel C, Wagner K, Morgan M et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 2011; 29: 2889–2896.

    Article  CAS  PubMed  Google Scholar 

  29. Holz-Schietinger C, Reich NO . RNA modulation of the human DNA methyltransferase 3A. Nucleic Acids Res 2012; 40: 8550–8557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol 2011; 29: 2499–2506.

    Article  CAS  PubMed  Google Scholar 

  31. Paquette RL, Landaw EM, Pierre RV, Kahan J, Lubbert M, Lazcano O et al. N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood 1993; 82: 590–599.

    CAS  PubMed  Google Scholar 

  32. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 2009; 460: 904–908.

    Article  CAS  PubMed  Google Scholar 

  33. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 2011; 118: 6239–6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 2012; 119: 3203–3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 2012; 120: 3173–3186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 2012; 26: 542–545.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported partially or in full by the following granting agencies: RVT (MDS Foundation YIA grant), AA & MDS International Foundation YIA, Cleveland Clinic Institutional Seed Support, Scott Hamilton CARES Grant, JPM (Celgene grant), and FT (FAPESP grant 2011/20750-9 and 2012/09982-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R V Tiu.

Ethics declarations

Competing interests

Mikkael A Sekeres is a consultant for Celgene and Amgen. Jaroslaw P Maciejewski receives honoraria from Celgene. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traina, F., Visconte, V., Elson, P. et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia 28, 78–87 (2014). https://doi.org/10.1038/leu.2013.269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.269

Keywords

This article is cited by

Search

Quick links