Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Transcription factor-pathway coexpression analysis reveals cooperation between SP1 and ESR1 on dysregulating cell cycle arrest in non-hyperdiploid multiple myeloma

Abstract

Multiple myeloma is a hematological cancer of plasma B cells and remains incurable. Two major subtypes of myeloma, hyperdiploid MM (HMM) and non-hyperdiploid MM (NHMM), have distinct chromosomal alterations and different survival outcomes. Transcription factors (TrFs) have been implicated in myeloma oncogenesis, but their dysregulation in myeloma subtypes are less studied. Here, we developed a TrF-pathway coexpression analysis to identify altered coexpression between two sample types. We apply the method to the two myeloma subtypes and the cell cycle arrest pathway, which is significantly differentially expressed between the two subtypes. We find that TrFs MYC, nuclear factor-κB and HOXA9 have significantly lower coexpression with cell cycle arrest in HMM, co-occurring with their overactivation in HMM. In contrast, TrFs ESR1 (estrogen receptor 1), SP1 and E2F1 have significantly lower coexpression with cell cycle arrest in NHMM. SP1 chromatin immunoprecipitation targets are enriched by cell cycle arrest genes. These results motivate a cooperation model of ESR1 and SP1 in regulating cell cycle arrest, and a hypothesis that their overactivation in NHMM disrupts proper regulation of cell cycle arrest. Cotargeting ESR1 and SP1 shows a synergistic effect on inhibiting myeloma proliferation in NHMM cell lines. Therefore, studying TrF-pathway coexpression dysregulation in human cancers facilitates forming novel hypotheses toward clinical utility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV . Multiple myeloma. Blood 2008; 111: 2962–2972.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson KC, Carrasco RD . Pathogenesis of myeloma. Annu Rev Pathol 2011; 6: 249–274.

    Article  CAS  PubMed  Google Scholar 

  3. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009; 23: 2210–2221.

    Article  CAS  PubMed  Google Scholar 

  4. Wuilleme S, Robillard N, Lode L, Magrangeas F, Beris H, Harousseau JL et al. Ploidy, as detected by fluorescence in situ hybridization, defines different subgroups in multiple myeloma. Leukemia 2005; 19: 275–278.

    Article  CAS  PubMed  Google Scholar 

  5. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr . Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106: 296–303.

    Article  CAS  PubMed  Google Scholar 

  6. Raje N, Hideshima T, Mukherjee S, Raab M, Vallet S, Chhetri S et al. Preclinical activity of P276-00, a novel small-molecule cyclin-dependent kinase inhibitor in the therapy of multiple myeloma. Leukemia 2009; 23: 961–970.

    Article  CAS  Google Scholar 

  7. Chng WJ, Kumar S, Vanwier S, Ahmann G, Price-Troska T, Henderson K et al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling. Cancer Res 2007; 67: 2982–2989.

    Article  CAS  Google Scholar 

  8. Chng WJ, Santana-Davila R, Van Wier SA, Ahmann GJ, Jalal SM, Bergsagel PL et al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IgH translocations. Leukemia 2006; 20: 807–813.

    Article  CAS  PubMed  Google Scholar 

  9. Agnelli L, Fabris S, Bicciato S, Basso D, Baldini L, Morabito F et al. Upregulation of translational machinery and distinct genetic subgroups characterise hyperdiploidy in multiple myeloma. Br J Haematol 2007; 136: 565–573.

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008; 455: 971–974.

    Article  CAS  PubMed  Google Scholar 

  11. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012; 490: 116–120.

    Article  CAS  PubMed  Google Scholar 

  12. Ptasinska A, Assi SA, Mannari D, James SR, Williamson D, Dunne J et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 2012; 26: 1829–1841.

    Article  CAS  PubMed  Google Scholar 

  13. Levine AJ, Oren M . The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9: 749–758.

    Article  CAS  PubMed  Google Scholar 

  14. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    Article  CAS  PubMed  Google Scholar 

  15. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  PubMed  Google Scholar 

  16. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  17. Kitada M, Rowitch DH . Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia 2006; 54: 35–46.

    Article  PubMed  Google Scholar 

  18. Watson M . CoXpress: differential co-expression in gene expression data. BMC Bioinform 2006; 7: 509.

    Article  Google Scholar 

  19. Zhang B, Horvath S . A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4 (Article 17).

  20. de la Fuente A . From ‘differential expression’ to ‘differential networking’—identification of dysfunctional regulatory networks in diseases. Trends Genet 2010; 26: 326–333.

    Article  CAS  PubMed  Google Scholar 

  21. Broyl A, Hose D, Lokhorst H, de Knegt Y, Peeters J, Jauch A et al. Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients. Blood 2010; 116: 2543–2553.

    Article  CAS  PubMed  Google Scholar 

  22. Agnelli L, Bicciato S, Fabris S, Baldini L, Morabito F, Intini D et al. Integrative genomic analysis reveals distinct transcriptional and genetic features associated with chromosome 13 deletion in multiple myeloma. Haematologica 2007; 92: 56–65.

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Wang X, Zheng H, Wang C, Minvielle S, Magrangeas F et al. Classify hyperdiploidy status of multiple myeloma patients using gene expression profiles. PLoS One 2013; 8: e58809.

    Article  CAS  PubMed  Google Scholar 

  24. Yan Z, Shah PK, Amin SB, Samur MK, Huang N, Wang X et al. Integrative analysis of gene and miRNA expression profiles with transcription factor-miRNA feed-forward loops identifies regulators in human cancers. Nucleic Acids Res 2012; 40: e135.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson TW . An Introduction To Multivariate Statistical Analysis 3rd edn Wiley-Interscience: Hoboken NJ, USA 2003.

    Google Scholar 

  26. Choi JK, Yu U, Yoo OJ, Kim S . Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 2005; 21: 4348–4355.

    Article  CAS  PubMed  Google Scholar 

  27. Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, Henze C, Loffler D, Koczan D et al. Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood 2004; 103: 242–251.

    Article  CAS  PubMed  Google Scholar 

  28. Largo C, Alvarez S, Saez B, Blesa D, Martin-Subero JI, Gonzalez-Garcia I et al. Identification of overexpressed genes in frequently gained/amplified chromosome regions in multiple myeloma. Haematologica 2006; 91: 184–191.

    CAS  PubMed  Google Scholar 

  29. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  PubMed  Google Scholar 

  30. Fulciniti M, Amin S, Nanjappa P, Rodig S, Prabhala R, Li C et al. Significant biological role of sp1 transactivation in multiple myeloma. Clin Cancer Res 2011; 17: 6500–6509.

    Article  CAS  PubMed  Google Scholar 

  31. Chou TC . Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res 2010; 70: 440–446.

    Article  CAS  Google Scholar 

  32. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  Google Scholar 

  33. Croce CM . Oncogenes and cancer. N Engl J Med 2008; 358: 502–511.

    Article  CAS  PubMed  Google Scholar 

  34. Xie RL, Gupta S, Miele A, Shiffman D, Stein JL, Stein GS et al. The tumor suppressor interferon regulatory factor 1 interferes with SP1 activation to repress the human CDK2 promoter. J Biol Chem 2003; 278: 26589–26596.

    Article  CAS  PubMed  Google Scholar 

  35. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  36. Roberts PJ, Der CJ . Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas C, Gustafsson JA . The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 2011; 11: 597–608.

    Article  CAS  PubMed  Google Scholar 

  38. Tan NY, Khachigian LM . Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol 2009; 29: 2483–2488.

    Article  CAS  PubMed  Google Scholar 

  39. Chen HZ, Tsai SY, Leone G . Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 2009; 9: 785–797.

    Article  CAS  PubMed  Google Scholar 

  40. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 2007; 3: e87.

    Article  PubMed  Google Scholar 

  41. Dai Y, Chen S, Shah R, Pei XY, Wang L, Almenara JA et al. Disruption of Src function potentiates Chk1-inhibitor-induced apoptosis in human multiple myeloma cells in vitro and in vivo. Blood 2011; 117: 1947–1957.

    Article  CAS  PubMed  Google Scholar 

  42. Castro-Rivera E, Samudio I, Safe S . Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem 2001; 276: 30853–30861.

    Article  CAS  PubMed  Google Scholar 

  43. Bartusel T, Schubert S, Klempnauer KH . Regulation of the cyclin D1 and cyclin A1 promoters by B-Myb is mediated by Sp1 binding sites. Gene 2005; 351: 171–180.

    Article  CAS  PubMed  Google Scholar 

  44. Sola B, Renoir JM . Antiestrogenic therapies in solid cancers and multiple myeloma. Curr Mol Med 2006; 6: 359–368.

    Article  CAS  PubMed  Google Scholar 

  45. Kim K, Thu N, Saville B, Safe S . Domains of estrogen receptor alpha (ERalpha) required for ERalpha/Sp1-mediated activation of GC-rich promoters by estrogens and antiestrogens in breast cancer cells. Mol Endocrinol 2003; 17: 804–817.

    Article  CAS  PubMed  Google Scholar 

  46. Louie MC, McClellan A, Siewit C, Kawabata L . Estrogen receptor regulates E2F1 expression to mediate tamoxifen resistance. Mol Cancer Res 2010; 8: 343–352.

    Article  CAS  Google Scholar 

  47. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  PubMed  Google Scholar 

  48. Whelan JT, Ludwig DL, Bertrand FE . HoxA9 induces insulin-like growth factor-1 receptor expression in B-lineage acute lymphoblastic leukemia. Leukemia 2008; 22: 1161–1169.

    Article  CAS  PubMed  Google Scholar 

  49. Lam DH, Aplan PD . NUP98 gene fusions in hematologic malignancies. Leukemia 2001; 15: 1689–1695.

    Article  CAS  PubMed  Google Scholar 

  50. Romana SP, Radford-Weiss I, Ben Abdelali R, Schluth C, Petit A, Dastugue N et al. NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia 2006; 20: 696–706.

    Article  CAS  PubMed  Google Scholar 

  51. Willoughby JA Sr, Sundar SN, Cheung M, Tin AS, Modiano J, Firestone GL . Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem 2009; 284: 2203–2213.

    Article  CAS  PubMed  Google Scholar 

  52. Levin ER . Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 2005; 19: 1951–1959.

    Article  CAS  PubMed  Google Scholar 

  53. Clemons M, Danson S, Howell A . Tamoxifen (‘Nolvadex’): a review. Cancer Treat Rev 2002; 28: 165–180.

    Article  CAS  PubMed  Google Scholar 

  54. Otsuki T, Yamada O, Kurebayashi J, Moriya T, Sakaguchi H, Kunisue H et al. Estrogen receptors in human myeloma cells. Cancer Res 2000; 60: 1434–1441.

    CAS  PubMed  Google Scholar 

  55. Gauduchon J, Gouilleux F, Maillard S, Marsaud V, Renoir JM, Sola B . 4-Hydroxytamoxifen inhibits proliferation of multiple myeloma cells in vitro through down-regulation of c-Myc, up-regulation of p27Kip1, and modulation of Bcl-2 family members. Clin Cancer Res 2005; 11: 2345–2354.

    Article  CAS  PubMed  Google Scholar 

  56. Wang W, Dong L, Saville B, Safe S . Transcriptional activation of E2F1 gene expression by 17beta-estradiol in MCF-7 cells is regulated by NF-Y-Sp1/estrogen receptor interactions. Mol Endocrinol 1999; 13: 1373–1387.

    CAS  Google Scholar 

  57. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006; 34: D108–D110.

    Article  CAS  Google Scholar 

  58. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM . A census of human transcription factors: function, expression and evolution. Nat Rev Genet 2009; 10: 252–263.

    Article  CAS  PubMed  Google Scholar 

  59. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006; 7 (Suppl 1): S7.

    Article  PubMed  Google Scholar 

  60. Fujiwara T, Hiramatsu M, Isagawa T, Ninomiya H, Inamura K, Ishikawa S et al. ASCL1-coexpression profiling but not single gene expression profiling defines lung adenocarcinomas of neuroendocrine nature with poor prognosis. Lung Cancer 2012; 75: 119–125.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program; No. 2010CB944904) (XW, YL, YZ, CL) and NIH R01 GM077122 (CL, ZY). This work was also supported in part by NIH Grants RO1-124929, PO1-155258, P50-100007 and PO1-78378 (to NCM) and by the Department of Veterans Affairs Merit Review Awards (to NCM). PKS was supported by Claudia Adams Barr Program in Innovative Basic Cancer Research and the Multiple Myeloma Career Development award. We thank the reviewers and Cheng Li group members for constructive comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N C Munshi or C Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

XW, ZY and CL designed the study. XW implemented the methodology, analyzed the data and interpreted the results in the context of biological literature. YL predicted the HMM status of one data set. PKS, SBA and YZ contributed to study design and data analysis. MF, MG and NCM provided biological interpretation of the results and carried out drug treatment experiments. XW and CL wrote the manuscript. All authors reviewed and approved the manuscript.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yan, Z., Fulciniti, M. et al. Transcription factor-pathway coexpression analysis reveals cooperation between SP1 and ESR1 on dysregulating cell cycle arrest in non-hyperdiploid multiple myeloma. Leukemia 28, 894–903 (2014). https://doi.org/10.1038/leu.2013.233

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.233

Keywords

This article is cited by

Search

Quick links