Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas

Abstract

Immunomodulatory drugs (IMiDs) are effective therapeutic agents with direct inhibitory effects on malignant B- and plasma-cells and immunomodulatory effects on the T-cell activation. This dual function of IMiDs makes them appealing candidates for combination with a cancer vaccine. We investigated the immune stimulatory effects of lenalidomide, administrated to mice in doses, which provided comparable pharmacokinetics to human patients, on the potency of a novel fusion DNA lymphoma vaccine. The combination was curative in the majority of mice with 8d pre-established syngeneic A20 lymphomas compared with vaccine or lenalidomide alone and induced immune memory. In vivo depletion experiments established the requirement for effector CD8+ and CD4+ T cells in protective immunity. Unexpectedly, lenalidomide alone was also associated with reduced numbers of systemic myeloid-derived suppressor cell (MDSC) and regulatory T cell (Treg) in tumor-bearing but not naïve mice, an effect that was independent of simple tumor burden reduction. These results confirm and extend results from other models describing the effect of lenalidomide on enhancing T-cell immunity, highlight the potency of this effect, and provide a rationale for clinical application. Independently, a novel mechanism of action reversing tumor-induced immune suppression by MDSC is suggested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Witzig TE, Wiernik PH, Moore T, Reeder C, Cole C, Justice G et al. Lenalidomide oral monotherapy produces durable responses in relapsed or refractory indolent non-hodgkin's lymphoma. J Clin Oncol 2009; 27: 5404–5409.

    Article  CAS  Google Scholar 

  2. Witzig TE, Vose JM, Zinzani PL, Reeder CB, Buckstein R, Polikoff JA et al. An international phase II trial of single-agent lenalidomide for relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma. Ann Oncol 2011; 22: 1622–1627.

    Article  CAS  Google Scholar 

  3. Fowler N, McLaughlin P, Hagemeister FB, Kwak LW, Fanale M, Neelapu S et al. A Biologic combination of lenalidomide and rituximab for front-line therapy of indolent b-cell non-hodgkin’s lymphoma. Blood 2009; 114, abstract 1714.

    Article  Google Scholar 

  4. Nowakowski GS, LaPlant B, Habermann TM, Rivera CE, Macon WR, Inwards DJ et al. Lenalidomide can be safely combined with R-CHOP (R2CHOP) in the initial chemotherapy for aggressive B-cell lymphomas: phase I study. Leukemia 2011; 25: 1877–1881.

    Article  CAS  Google Scholar 

  5. Verhelle D, Corral LG, Wong K, Mueller JH, Moutouh-de Parseval L, Jensen-Pergakes K et al. Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res 2007; 67: 746–755.

    Article  CAS  Google Scholar 

  6. Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96: 2943–2950.

    CAS  Google Scholar 

  7. Xu YB, Li JW, Ferguson GD, Mercurio F, Khambatta G, Morrison L et al. Immunomodulatory drugs reorganize cytoskeleton by modulating Rho GTPases. Blood 2009; 114: 338–345.

    Article  CAS  Google Scholar 

  8. Lopez-Girona A, Heintel D, Zhang LH, Mendy D, Gaidarova S, Brady H et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol 2011; 154: 325–336.

    Article  CAS  Google Scholar 

  9. Li SR, Pal R, Monaghan SA, Schafer P, Ouyang HJ, Mapara M et al. IMiD immunomodulatory compounds block C/EBP beta translation through eIF4E down-regulation resulting in inhibition of MM. Blood 2011; 117: 5157–5165.

    Article  CAS  Google Scholar 

  10. Dredge K, Marriott JB, Macdonald CD, Man HW, Chen R, Muller GW et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer 2002; 87: 1166–1172.

    Article  CAS  Google Scholar 

  11. Lentzsch S, Rogers MS, LeBlanc R, Birsner AE, Shah JH, Treston AM et al. S-3-amino-phthalimido-glutarimide inhibits angiogenesis and growth of B-cell neoplasias in mice. Cancer Res 2002; 62: 2300–2305.

    CAS  Google Scholar 

  12. Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 2011; 118: 4771–4779.

    Article  CAS  Google Scholar 

  13. Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G . Thalidomide selectively inhibits tumor-necrosis-factor-alpha production by stimulated human monocytes. J Exp Med 1991; 173: 699–703.

    Article  CAS  Google Scholar 

  14. Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 2001; 98: 210–216.

    Article  CAS  Google Scholar 

  15. Gorgun G, Calabrese E, Soydan E, Hideshima T, Perrone G, Bandi M et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 2010; 116: 3227–3237.

    Article  CAS  Google Scholar 

  16. LeBlanc R, Hideshima T, Catley LP, Shringarpure R, Burger R, Mitsiades N et al. Immunomodulatory drug costimulates T cells via the B7-CD28 pathway. Blood 2004; 103: 1787–1790.

    Article  CAS  Google Scholar 

  17. Luptakova K, Rosenblatt J, Glotzbecker B, Mills H, Stroopinsky D, Kufe T et al. Lenalidomide enhances anti-myeloma cellular immunity. Cancer Immunol Immunother 2013; 62: 39–49.

    Article  CAS  Google Scholar 

  18. Ramsay AG, Clear AJ, Kelly G, Fatah R, Matthews J, Macdougall F et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood 2009; 114: 4713–4720.

    Article  CAS  Google Scholar 

  19. Cheever MA, Higano CS . PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17: 3520–3526.

    Article  Google Scholar 

  20. Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 2011; 364: 2119–2127.

    Article  CAS  Google Scholar 

  21. Schuster SJ, Neelapu SS, Gause BL, Janik JE, Muggia FM, Gockerman JP et al. Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J Clin Oncol 2011; 29: 2787–2794.

    Article  CAS  Google Scholar 

  22. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 2002; 298: 1025–1029.

    Article  CAS  Google Scholar 

  23. Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW . Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 1999; 17: 253–258.

    Article  CAS  Google Scholar 

  24. Biragyn A, Ruffini PA, Coscia M, Harvey LK, Neelapu SS, Baskar S et al. Chemokine receptor-mediated delivery directs self-tumor antigen efficiently into the class II processing pathway in vitro and induces protective immunity in vivo. Blood 2004; 104: 1961–1969.

    Article  CAS  Google Scholar 

  25. Biragyn A, Surenhu M, Yang D, Ruffini PA, Haines BA, Klyushnenkova E et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 2001; 167: 6644–6653.

    Article  CAS  Google Scholar 

  26. Qin H, Cha SC, Neelapu SS, Lou Y, Wei J, Liu YJ et al. Vaccine site inflammation potentiates idiotype DNA vaccine-induced therapeutic T cell-, and not B cell-, dependent antilymphoma immunity. Blood 2009; 114: 4142–4149.

    Article  CAS  Google Scholar 

  27. Armstrong AC, Dermime S, Allinson CG, Bhattacharyya T, Mulryan K, Gonzalez KR et al. Immunization with a recombinant adenovirus encoding a lymphoma idiotype: induction of tumor-protective immunity and identification of an idiotype-specific T cell epitope. J Immunol 2002; 168: 3983–3991.

    Article  CAS  Google Scholar 

  28. Iida S, Chou T, Okamoto S, Nagai H, Hatake K, Murakami H et al. Lenalidomide plus dexamethasone treatment in Japanese patients with relapsed/refractory multiple myeloma. Int J Hematol 2010; 92: 118–126.

    Article  CAS  Google Scholar 

  29. Qin H, Cha SC, Neelapu SS, Liu C, Wang YH, Wei J et al. Generation of an immune microenvironment as a novel mechanism for myotoxins to potentiate genetic vaccines. Vaccine 2010; 28: 7970–7978.

    Article  CAS  Google Scholar 

  30. Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 2010; 28: 4324–4332.

    Article  Google Scholar 

  31. Dredge K, Marriott JB, Todryk SM, Muller GW, Chen R, Stirling DI et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J Immunol 2002; 168: 4914–4919.

    Article  CAS  Google Scholar 

  32. Corral LG, Haslett PA, Muller GW, Chen R, Wong LM, Ocampo CJ et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol 1999; 163: 380–386.

    CAS  Google Scholar 

  33. Noonan K, Rudraraju L, Ferguson A, Emerling A, Pasetti MF, Huff CA et al. Lenalidomide-induced immunomodulation in multiple myeloma: impact on vaccines and antitumor responses. Clin Cancer Res 2012; 18: 1426–1434.

    Article  CAS  Google Scholar 

  34. Galustian C, Meyer B, Labarthe MC, Dredge K, Klaschka D, Henry J et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 2009; 58: 1033–1045.

    Article  CAS  Google Scholar 

  35. Zhu D, Corral LG, Fleming YW, Stein B . Immunomodulatory drugs Revlimid (lenalidomide) and CC-4047 induce apoptosis of both hematological and solid tumor cells through NK cell activation. Cancer Immunol Immunother 2008; 57: 1849–1859.

    Article  CAS  Google Scholar 

  36. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y et al. Identification of a primary target of thalidomide teratogenicity. Science 2010; 327: 1345–1350.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a contract from Celgene Corporation and by grants from the Leukemia and Lymphoma Society (TRP 6003-07 and SCOR 7262-08), Cancer Prevention and Research Institute of Texas (RP 100457) and Department of Defense (W81XWH-07) to LWK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L W Kwak.

Ethics declarations

Competing interests

Larry W Kwak has been funded by Celgene. Jian Chen, Sekhar Surapaneni, Scott Bateman are employed by Celgene. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakamaki, I., Kwak, L., Cha, Sc. et al. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia 28, 329–337 (2014). https://doi.org/10.1038/leu.2013.177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.177

Keywords

This article is cited by

Search

Quick links